Electrochemical activity of holotransferrin and its electrocatalysis-mediated process of artemisinin.

Bioorg Med Chem Lett

Department of Chemistry, Jinan University, Guangzhou 510632, PR China.

Published: February 2009

Holotransferrin, the iron (III) transport protein in the blood, can significantly increase the anticancer activity of artemisinin, which is isolated from the Chinese plant qinghaosu. This paper investigates the action process of holotransferrin-induced electrocatalytic reduction of artemisinin by spectroscopic and electrochemical techniques. Results show that holotransferrin(Fe(III)) is the electrochemical sites of holotransferrin, which can catalyze the reduction of artemisinin through lowering the overpotential by about 80 mV. Compared with the different electrochemical behaviors of artemisinin with apotransferrin and holoprotein (apotransferrin in the presence of Fe(III)), respectively, it demonstrates that holotransferrin(Fe(III)) plays an important role in the electrocatalytic reduction of artemisinin, which can catalyze the cleavage of the endoperoxide bridge in artemisinin. A reliable two-step process is proposed to explain that artemisinin is activated by holotransferrin(Fe(III))-mediated electrocatalytic reduction. These results can provide further information for better understanding the anticancer action of holotransferrin-conjugated artemisinin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.12.004DOI Listing

Publication Analysis

Top Keywords

electrocatalytic reduction
12
reduction artemisinin
12
artemisinin
9
electrochemical
4
electrochemical activity
4
activity holotransferrin
4
holotransferrin electrocatalysis-mediated
4
electrocatalysis-mediated process
4
process artemisinin
4
artemisinin holotransferrin
4

Similar Publications

Doping strategies have been recognized as effective approaches for developing cost-effective and durable catalysts with enhanced reactivity and selectivity in the electrochemical synthesis of value-added compounds directly from CO. However, the reaction mechanism and the specific roles of heteroatom doping, such as N doping, in advancing the CO reduction reaction are still controversial due to the lack of precise control of catalyst surface microenvironments. In this study, we investigated the effects of N doping on the performances for electrochemically converting CO to CO over Ni@NCNT/graphene hybrid structured catalysts (Ni@NCNT/Gr).

View Article and Find Full Text PDF

Integrated system for electrolyte recovery, product separation, and CO capture in CO reduction.

Nat Commun

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006, China.

Challenges in CO capture, CO crossover, product separation, and electrolyte recovery hinder electrocatalytic CO reduction (COR). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the COR effluent electrolyte.

View Article and Find Full Text PDF

Improved Ammonia Synthesis and Energy Output from Zinc-Nitrate Batteries by Spin-State Regulation in Perovskite Oxides.

J Am Chem Soc

January 2025

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Electrocatalytic nitrate reduction to ammonia (eNRA) is a promising route toward environmental sustainability and clean energy. However, its efficiency is often limited by the slow conversion of intermediates due to spin-forbidden processes. Here, we introduce a novel A-site high-entropy strategy to develop a new perovskite oxide (LaPrNdBaSr)CoO (LPNBSC) for eNRA.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Carbonization (Argon atmosphere, 900 °C, 2 h) of heteroatom-enriched pyridine-bridged inorganic-organic hybrid material (HPHM) resulted in the formation of a high specific surface area (SA of 1080 m g) carbonaceous material designated as HPHMC900. The HPHMC900 serves as an effective electrocatalyst for the reduction of nitrate in an aqueous environment to ammonia (NORR). Importantly, HPHMC900 demonstrated fast kinetics for the NORR with a low Tafel slope of 70 mV decade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!