The hepatitis B virus-encoded X (HBx) protein coactivates transcription of a variety of viral and cellular genes and it is believed to play essential roles in viral replication and hepatocarcinogenesis. To examine the pleiotropic effects of HBx protein on host cell protein expression, we utilized 2-DE and MS analysis to compare and identify differentially expressed proteins between a stable HBx-transfected cell line (HepG2-HBx), constitutively expressing HBx, and vector control cells. Of the 60 spots identified as differentially expressed (+/- over 2-fold, p < 0.05) between the two cell lines, 54 spots were positively identified by MS/MS analysis. Several recent studies suggested that HBx was involved in regional hypermethylation of tumor suppressor genes and global hypomethylation of satellite 2 repeats during hepatocarcinogenesis; however, no specific gene has been reported as hypomethylated by HBx. Promoter methylation analysis was examined for those protein spots showing significant alterations, and our results revealed that specific genes, such as aldehyde dehydrogenase 1 (ALDH1), can be hypomethylated by HBx, and two calcium ion-binding proteins, S100A6 and S100A4, were hypermethylated by HBx and could be re-expressed by AZA (DNA methylase inhibitor) treatment. Moreover, via cluster and pathway analysis, we proposed a hypothetical model for the HBx regulatory circuit involving aberrant methylation of retinol metabolism-related genes and calcium homeostasis-related genes. In summary, we profiled proteome alterations between HepG2-HBx and control cells, and found that HBx not only induces regional hypermethylation but also specific hypomethylation of host cell genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr8008622 | DOI Listing |
Front Microbiol
January 2025
Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan.
Current treatments for hepatitis B virus (HBV), such as interferons and nucleic acid analogs, have limitations due to side effects like depression and the development of drug-resistant mutants, highlighting the need for new therapeutic approaches. In this study, we identified microRNA-3145 (miR-3145) as a host-derived miRNA with antiviral activity that is upregulated in primary hepatocytes during HBV infection. The expression of its precursor, pri-miR-3145, increased in response to the the virus infection, and miR-3145 downregulated the hepatitis B virus S (HBS) antigen and hepatitis B virus X (HBX), thereby inhibiting viral replication.
View Article and Find Full Text PDFToxicology
January 2025
Department of Pharmacology, Shantou University Medical College, Shantou 515041, China. Electronic address:
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.
View Article and Find Full Text PDFJ Clin Transl Hepatol
January 2025
Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Background And Aims: Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.
View Article and Find Full Text PDFCancers (Basel)
December 2024
The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610065, China.
In the original publication [...
View Article and Find Full Text PDFPLoS Pathog
January 2025
Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America.
HBV genotype A has two major subtypes, A1 (commonly in Africa) and A2 (commonly in Europe) with only 4% nucleotide differences. Individuals infected with these two subtypes appear to have different clinical manifestations and virologic features. Whether such a difference results from the virus or host has not been established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!