The present study introduces a new experimental model of hypoxia/reperfusion injury using a newly developed bioreactor system. The injury is introduced and kept localized via fluid dynamic manipulation. Using low Reynolds number fluid flow, regions of the culture can be injured while maintaining physiological conditions in the remaining culture. This approach enables both normal and injured cells within the same monolayer to be investigated side-by-side. The current study evaluated the ability of the model to induce localized reperfusion injury in a monolayer of fetal canine cardiomyocytes (FCCs). Significant apoptosis was found in the hypoxia/reperfusion-injured but not normal-flow regions of the myocyte cultures. The model holds the potential to help elucidate the fundamental mechanisms of hypoxic/reperfusion insults in myocardium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.22216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!