Objective: Fibrosis is believed to occur through normal tissue remodeling failing to terminate. Tissue repair intimately involves the ability of fibroblasts to contract extracellular matrix (ECM), and enhanced ECM contraction is a hallmark of fibrotic cells in various conditions, including scleroderma. Some fibrogenic transcriptional responses to transforming growth factor beta (TGFbeta), including alpha-smooth muscle actin (alpha-SMA) expression and ECM contraction, require focal adhesion kinase/Src (FAK/Src). The present study was undertaken to assess whether TGFbeta-activated kinase 1 (TAK1) acts downstream of FAK/Src to mediate fibrogenic responses in fibroblasts.

Methods: We used microarray, real-time polymerase chain reaction, Western blot, and collagen gel contraction assays to assess the ability of wild-type and TAK1-knockout fibroblasts to respond to TGFbeta1.

Results: The ability of TGF to induce TAK1 was blocked by the FAK/Src inhibitor PP2. JNK phosphorylation in response to TGFbeta1 was impaired in the absence of TAK1. TGFbeta could not induce matrix contraction or expression of a group of fibrotic genes, including alpha-SMA, in the absence of TAK1.

Conclusion: These results suggest that TAK1 operates downstream of FAK/Src in mediating fibrogenic responses and that targeting of TAK1 may be a viable antifibrotic strategy in the treatment of certain disorders, including scleroderma.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.24223DOI Listing

Publication Analysis

Top Keywords

transforming growth
12
growth factor
12
alpha-smooth muscle
8
muscle actin
8
extracellular matrix
8
matrix contraction
8
ecm contraction
8
including scleroderma
8
downstream fak/src
8
fibrogenic responses
8

Similar Publications

The present study aimed to unveil the gastroprotective potential of Vaccinium macrocarpon (VM) extract and its mechanism of action against indomethacin (INDO)-induced gastric ulcers in rats. To achieve this goal, rats were pretreated with either omeprazole (20 mg/kg) or VM (100 mg/kg) orally for 14 consecutive days. Gastric tissue samples were collected and various parameters were evaluated to understand the mechanism of VM's action, including the levels of superoxide dismutase, malondialdehyde, glutathione, CAT and transforming growth factor beta (TGF-β), as well as the mRNA expression levels of tumour necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B (NF-κB) and inhibitor kappa B (IκB).

View Article and Find Full Text PDF

Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.

View Article and Find Full Text PDF

Human intraepithelial mast cell differentiation and effector function are directed by TGF-β signaling.

J Clin Invest

January 2025

Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Mast cells (MCs) expressing a distinctive protease phenotype (MCTs) selectively expand within the epithelium of human mucosal tissues during type 2 (T2) inflammation. While MCTs are phenotypically distinct from subepithelial MCs (MCTCs), signals driving human MCT differentiation and this subset's contribution to inflammation remain unexplored. Here, we have identified TGF-β as a key driver of the MCT transcriptome in nasal polyps.

View Article and Find Full Text PDF

Similarly to acute intestinal helminth infection, several conditions of chronic eosinophilic type 2 inflammation of mucosal surfaces, including asthma and eosinophilic esophagitis, feature robust expansions of intraepithelial mast cells (MCs). Also the hyperplastic mucosa of nasal polyposis in the context of chronic rhinosinusitis, with or without COX1 inhibitor intolerance, contains impressive numbers of intraepithelial MCs. In this issue of the JCI, Derakhshan et al.

View Article and Find Full Text PDF

Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!