Topoisomerase IIbeta activates a subset of neuronal genes that are repressed in AT-rich genomic environment.

PLoS One

Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Published: February 2009

DNA topoisomerase II (topo II) catalyzes a strand passage reaction in that one duplex is passed through a transient brake or gate in another. Completion of late stages of neuronal development depends on the presence of active beta isoform (topo IIbeta). The enzyme appears to aid the transcriptional induction of a limited number of genes essential for neuronal maturation. However, this selectivity and underlying molecular mechanism remains unknown. Here we show a strong correlation between the genomic location of topo IIbeta action sites and the genes it regulates. These genes, termed group A1, are functionally biased towards membrane proteins with ion channel, transporter, or receptor activities. Significant proportions of them encode long transcripts and are juxtaposed to a long AT-rich intergenic region (termed LAIR). We mapped genomic sites directly targeted by topo IIbeta using a functional immunoprecipitation strategy. These sites can be classified into two distinct classes with discrete local GC contents. One of the classes, termed c2, appears to involve a strand passage event between distant segments of genomic DNA. The c2 sites are concentrated both in A1 gene boundaries and the adjacent LAIR, suggesting a direct link between the action sites and the transcriptional activation. A higher-order chromatin structure associated with AT richness and gene poorness is likely to serve as a silencer of gene expression, which is abrogated by topo IIbeta releasing nearby genes from repression. Positioning of these genes and their control machinery may have developed recently in vertebrate evolution to support higher functions of central nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605559PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004103PLOS

Publication Analysis

Top Keywords

topo iibeta
16
strand passage
8
action sites
8
genes
6
topo
5
sites
5
topoisomerase iibeta
4
iibeta activates
4
activates subset
4
subset neuronal
4

Similar Publications

Background: Fagonia cretica L. (Family: Zygophyllaceae), is a wild shrub mostly found in Mediterranean districts and extensively used in folk medicine for a vast array of purposes such as antidiabetic and anticancer during the early stages. The goal of the current study was to validate the antioxidant, anti-inflammatory, and cytotoxic properties of Egyptian F.

View Article and Find Full Text PDF

Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIβ, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation.

View Article and Find Full Text PDF

Background: A novel series of 1,3,4‒oxadiazole connected to derivatives of quinazolinone (7a-e and 8a-f) was synthesized in the current investigation, and its anticancer and Topoisomerase‒ II inhibitory activity was evaluated.

Objective: These findings inspired the design, synthesis, and biological analysis of these 1,3,4‒oxadiazole-quinazolinone analogues as antiproliferative Topo‒II inhibitors.

Methods: The novel compound structures were determined using mass spectrometry and spectral methods (IR, NMR: H & C).

View Article and Find Full Text PDF

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research.

View Article and Find Full Text PDF

Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIβ (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!