Insulin secretion from beta-cells is regulated by a complex signaling network. Our earlier study has reported that Rac1 participates in glucose- and cAMP-induced insulin secretion probably via maintaining a functional actin structure for recruitment of insulin granules. Type Ialpha phosphatidylinositol-4-phosphate 5-kinase (PIP5K-Ialpha) is a downstream effector of Rac1 and a critical enzyme for synthesis of phosphatidylinositol-4,5-bisphosphate (PIP(2)). By using an RNA interference technique, PIP5K-Ialpha in INS-1 beta-cells could be specifically knocked down by 70-75%. PIP5K-Ialpha knockdown disrupted filamentous actin structure and caused changes in cell morphology. In addition, PIP(2) content in the plasma membrane was reduced and the glucose effect on PIP(2) was abolished but without affecting glucose-induced formation of inositol 1,4,5-trisphosphate. At basal conditions (2.8 mM glucose), PIP5K-Ialpha knockdown doubled insulin secretion, elevated glucose metabolic rate, depolarized resting membrane potential, and raised cytoplasmic free Ca(2+) levels ([Ca(2+)](i)). The total insulin release at high glucose was increased upon PIP5K-Ialpha knockdown. However, the percent increment of insulin secretion by high glucose and forskolin over the basal release was significantly reduced, an effect more apparent on the late phase of insulin secretion. Metabolism and [Ca(2+)](i) rises at high glucose were also attenuated in cells after PIP5K-Ialpha knockdown. In contrast, PIP5K-Ialpha knockdown had no effect on cell growth and viability. Taken together, our data suggest that PIP5K-Ialpha may play an important role in both the proximal and distal steps of signaling cascade for insulin secretion in beta-cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2008-0516 | DOI Listing |
Lancet Diabetes Endocrinol
January 2025
Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK. Electronic address:
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome.
View Article and Find Full Text PDFLab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Gastroenterology, The First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China.
In this article, we review the study by Jin , which examined the role of intestinal glucagon-like peptide-1 (GLP-1) in counterregulatory responses to hypoglycemia in patients with type 1 diabetes mellitus (T1DM). With the global rise of T1DM, there is an increased burden on society and healthcare systems. Due to insulin therapy and islet dysfunction, T1DM patients are highly vulnerable to severe hypoglycemia, a leading cause of mortality.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2025
Department of Agricultural Science, Graduate School of Sustainability Science.
FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:
Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1a) using C57BL/6J mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!