Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Hypercatabolism of high-density lipoprotein (HDL) apolipoprotein (apo) A-I results in low plasma apoA-I concentration. The mechanisms regulating apoA-I catabolism may relate to alterations in very low density lipoprotein (VLDL) metabolism and plasma adiponectin and serum amyloid A protein (SAA) concentrations.
Objective: We examined the associations between the fractional catabolic rate (FCR) of HDL-apoA-I and VLDL kinetics, plasma adiponectin, and SAA concentrations.
Study Design: The kinetics of HDL-apoA-I and VLDL-apoB were measured in 50 obese and 37 nonobese men using stable isotopic techniques.
Results: In the obese group, HDL-apoA-I FCR was positively correlated with insulin, homeostasis model of assessment for insulin resistance (HOMA-IR) score, triglycerides, VLDL-apoB, and VLDL-apoB production rate (PR). In the nonobese group, HDL-apoA-I FCR was positively correlated with triglycerides, apoC-III, VLDL-apoB, and VLDL-apoB PR and negatively correlated with plasma adiponectin. Plasma SAA was not associated with HDL-apoA-I FCR in either group. In multiple regression analyses, VLDL-apoB PR and HOMA-IR score, and VLDL-apoB PR and adiponectin were independently predictive of HDL-apoA-I FCR in the obese and nonobese groups, respectively. HDL-apoA-I FCR was positively and strongly associated with HDL-apoA-I PR in both groups.
Conclusions: Variation in VLDL-apoB production, and hence plasma triglyceride concentrations, exerts a major effect on the catabolism of HDL-apoA-I. Insulin resistance and adiponectin may also contribute to the variation in HDL-apoA-I catabolism in obese and nonobese subjects, respectively. We also hypothesize that apoA-I PR determines a steady-state, lowered plasma of apoA-I, which may reflect a compensatory response to a primary defect in the catabolism of HDL-apoA-I due to altered VLDL metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2008-1457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!