The ability to interface proteins to device surfaces is important for a range of applications. Here, we enlist the unique capabilities of enzymes and biologically derived polymers to assemble target proteins to electrode addresses. First, the stimuli-responsive aminopolysaccharide chitosan is directed to assemble at the electrode address in response to electrode-imposed signals. The electrodeposited chitosan film serves as the biodevice interface for subsequent protein assembly. Next, tyrosinase is used to catalyze grafting of a protein or peptide tether to the chitosan film. Finally, microbial transglutaminase (mTG) catalyzes the assembly of target proteins to the tether. mTG covalently links proteins through their glutamine (Gln) and lysine (Lys) residues. Since Gln and Lys residues of globular proteins are often inaccessible to mTG, we engineered our target proteins to have fusion tags with added Gln or Lys residues. This assembly method employs the electrical signal to confer spatial selectivity (during chitosan electrodeposition) and employs the enzymes to confer chemical selectivity (i.e., amino acid residue selectivity). Further, this method is mild, since no reactive reagents or protection steps are required, and all steps are performed in aqueous solution. These results demonstrate the potential for employing biological materials and mechanisms to biofabricate the biodevice interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la802618q | DOI Listing |
J Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFGM Crops Food
December 2025
School of Life Science, Henan University, Kaifeng, Henan, People's Republic of China.
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil.
Background: The therapeutic targeting of the intestinal microbiota has gained increasing attention as a promising avenue for addressing mood disorders. This study aimed to assess the potential effect of supplementing standard pharmacological treatment with the probiotic kefir in patients with Major Depressive Disorder (MDD).
Methods: Thirty-eight female participants diagnosed with moderate MDD by the Hamilton Rating Scale for Depression (HAM-D) were selected to receive the probiotic kefir in conjunction with antidepressant therapy for 12 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!