We describe a technique that allows measurement of the mass and shape of sessile liquid microdrops during evaporation. Therefore, the microdrops are deposited by an inkjet onto a silicon microcantilever, and the bending and the shift in resonance frequency are monitored. From hydrophobized surfaces, microscopic water drops evaporate with the same kinetics as macroscopic drops; we verify the validity of known evaporation laws to drops with diameters from 100 microm to below 10 microm. From hydrophilic surfaces, the evaporation is slowed down during the last approximately 100 ms; we believe that this occurs due to flattening of the drops, which are then stabilized by interfacial forces and disjoining pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la803474xDOI Listing

Publication Analysis

Top Keywords

hydrophilic surfaces
8
transition evaporation
4
evaporation kinetics
4
kinetics water
4
water microdrops
4
microdrops hydrophilic
4
surfaces describe
4
describe technique
4
technique allows
4
allows measurement
4

Similar Publications

Decoding the suppressing effects of Pluronic triblock copolymers on copper electrodeposition.

J Colloid Interface Sci

April 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:

Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.

View Article and Find Full Text PDF

Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength.

Food Chem

January 2025

College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:

The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.

View Article and Find Full Text PDF

Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.

View Article and Find Full Text PDF

Production and Characterization of Oil-Loaded, Semi-Resorbable, Tri-Layered Hernia Mesh.

Polymers (Basel)

January 2025

Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.

Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!