Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200802249 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, College of Materials Science and Engineering, South Lushan Road 2#, 410082, China, 410082, Changsha, CHINA.
Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India. Electronic address:
Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.
View Article and Find Full Text PDFBiomicrofluidics
January 2025
State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China.
In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!