Cydia pomonella granulovirus (CpGV) has been used for 15 years as a bioinsecticide in codling moth (Cydia pomonella) control. In 2004, some insect populations with low susceptibility to the virus were detected for the first time in southeast France. RGV, a laboratory colony of codling moths resistant to the CpGV-M isolate used in the field, was established with collection of resistant insects in the field followed by an introgression of the resistant trait into a susceptible colony (Sv). The resistance level (based on the 50% lethal concentrations [LC(50)s]) of the RGV colony to the CpGV-M isolate, the active ingredient in all commercial virus formulations in Europe, appeared to be over 60,000-fold compared to the Sv colony. The efficiency of CpGV isolates from various other regions was tested on RGV. Among them, two isolates (I12 and NPP-R1) presented an increased pathogenicity on RGV. I12 had already been identified as effective against a resistant C. pomonella colony in Germany and was observed to partially overcome the resistance in the RGV colony. The recently identified isolate NPP-R1 showed an even higher pathogenicity on RGV than other isolates, with an LC(50) of 166 occlusion bodies (OBs)/microl, compared to 1.36 x 10(6) OBs/microl for CpGV-M. Genetic characterization showed that NPP-R1 is a mixture of at least two genotypes, one of which is similar to CpGV-M. The 2016-r4 isolate obtained from four successive passages of NPP-R1 in RGV larvae had a sharply reduced proportion of the CpGV-M-like genotype and an increased pathogenicity against insects from the RGV colony.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643567PMC
http://dx.doi.org/10.1128/AEM.01998-08DOI Listing

Publication Analysis

Top Keywords

cydia pomonella
12
rgv colony
12
pomonella granulovirus
8
codling moth
8
rgv
8
cpgv-m isolate
8
rgv isolates
8
increased pathogenicity
8
pathogenicity rgv
8
colony
7

Similar Publications

Background: Efficacy of insecticides is often determined from apparent yield loses due to a target pest. However, pests can affect yields even when controls work as expected. Further, most pest populations are monitored through adult counts without procedures to assess dynamics of immature stages.

View Article and Find Full Text PDF
Article Synopsis
  • * Results showed that a dose of 200 Gy resulted in high male sterility but significantly decreased their mating competitiveness due to reduced expression of certain pheromone recognition genes.
  • * The research suggests that using plant volatiles, like linalool, can enhance mating competitiveness in irradiated males, indicating a viable method to improve the effectiveness of sterile insect technique (SIT) in pest management.
View Article and Find Full Text PDF

The use of CpGV strains as the basis for bioinsecticides is an effective and safe way to control . The research is aimed at the identification and study of new CpGV strains. Objects of identification and bioinformatic analysis: 18 CpGV strains.

View Article and Find Full Text PDF

Insecticides are commonly utilized in agriculture and forestry for pest control, but their dispersal can pose hazards to humans and environment. Understanding resistance, inheritance patterns, and fitness costs can help manage resistance. A λ-cyhalothrin-resistant population (LCR) of , a global pest of pome fruits and walnuts, was obtained through selective insecticide breeding for 15 generations, showing stable moderate resistance (23.

View Article and Find Full Text PDF

Genetic biocontrol technologies present promising and eco-friendly strategies for the management of pest and insect-transmitted diseases. Although considerable advancements achieve in gene drive applications targeting mosquitoes, endeavors to combat agricultural pests have been somewhat restricted. Here, we identify that the testis-specific serine/threonine kinases (TSSKs) family is uniquely expressed in the testes of Cydia pomonella, a prominent global invasive species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!