Objective: The receptor for advanced glycation end products (RAGE) is expressed at high levels in the lung, particularly in type 1 alveolar cells, and has been shown to amplify injury triggered by acute stress. Previous studies suggest serum concentrations of soluble RAGE increase during pulmonary reperfusion injury after transplantation. RAGE blockade has been shown to suppress hepatic and cardiac ischemia and reperfusion injury in mice. Thus we tested the hypothesis that RAGE mediates tissue-injury mechanisms in ischemia and reperfusion injury in the lung.

Methods: C57BL/6 mice were subjected to 30 minutes of pulmonary ischemia by clamping the left hilum, followed by 60 minutes of reperfusion. Lung function was assessed by means of blood gas analysis, and capillary leak was assessed by injecting fluorescein isothiocyanate-labeled albumin and comparing fluorescence in bronchial lavage fluid with that in serum. Histologic analysis of the lung was performed by a pathologist naive to the experimental conditions.

Results: In animals subjected to RAGE blockade, significant increases in Po(2) (108 vs 73 mm Hg, P = .0094) and more than 3-fold decrease in capillary leak Relative Fluorescent Units (RFU, 6.12 vs 1.75; P = .001) were observed. Histologic examination revealed significant injury reduction in soluble RAGE-treated animals versus control animals. RAGE knockout mice exhibited a protected phenotype when exposed to pulmonary ischemia and reperfusion. Additionally, interleukin 8 production and nuclear factor kappaB activation were increased in control mice.

Conclusion: Abrogation of RAGE signaling attenuates pulmonary ischemia and reperfusion injury. This study suggests that RAGE might play a central role in pulmonary reperfusion injury and in transplantation and that blockade of RAGE might offer a potential target to abrogate pulmonary reperfusion injury in clinical transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2008.05.032DOI Listing

Publication Analysis

Top Keywords

reperfusion injury
28
pulmonary reperfusion
16
ischemia reperfusion
16
pulmonary ischemia
12
reperfusion
9
injury
9
rage
9
receptor advanced
8
advanced glycation
8
attenuates pulmonary
8

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Hypothermic oxygenated machine perfusion (HOPE) has emerged as a critical innovation in liver transplantation (LTx), offering significant protection against ischemia-reperfusion injury (IRI). This study focuses on quantifying and characterizing immune cells flushed out during HOPE to explore its effects on graft function and post-transplant outcomes. Fifty liver grafts underwent end-ischemic HOPE.

View Article and Find Full Text PDF

This narrative review explores the benefits and risks of cannabinoids in kidney health, particularly in individuals with pre-existing renal conditions. It discusses the roles of cannabinoid receptor ligands (phytocannabinoids, synthetic cannabinoids, and endocannabinoids) in kidney physiology. The metabolism and excretion of these substances are also highlighted, with partial elimination occurring via the kidneys.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!