Protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that transfers N-acetylglucosamine to O-mannose of glycoproteins. Mutations of the POMGnT1 gene cause muscle-eye-brain (MEB) disease. To obtain a better understanding of the pathogenesis of MEB disease, we mutated the POMGnT1 gene in mice using a targeting technique. The mutant muscle showed aberrant glycosylation of alpha-DG, and alpha-DG from mutant muscle failed to bind laminin in a binding assay. POMGnT1(-/-) muscle showed minimal pathological changes with very low-serum creatine kinase levels, and had normally formed muscle basal lamina, but showed reduced muscle mass, reduced numbers of muscle fibers, and impaired muscle regeneration. Importantly, POMGnT1(-/-) satellite cells proliferated slowly, but efficiently differentiated into multinuclear myotubes in vitro. Transfer of a retrovirus vector-mediated POMGnT1 gene into POMGnT1(-/-) myoblasts completely restored the glycosylation of alpha-DG, but proliferation of the cells was not improved. Our results suggest that proper glycosylation of alpha-DG is important for maintenance of the proliferative activity of satellite cells in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2008.12.001DOI Listing

Publication Analysis

Top Keywords

pomgnt1 gene
12
glycosylation alpha-dg
12
proliferative activity
8
meb disease
8
mutant muscle
8
satellite cells
8
muscle
7
reduced proliferative
4
activity primary
4
primary pomgnt1-null
4

Similar Publications

Objective: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD.

View Article and Find Full Text PDF

Introduction: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD.

View Article and Find Full Text PDF

Introduction: Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous muscle disorders. We aimed to share the diagnostic yield of an NGS gene panel containing LGMD-related genes and our experience with LGMD.

Methods: Between February 2019 and October 2022, patients with a suspicion of LGMD and their relatives were reviewed in terms of demographic, clinical, and individual genetic data, age of symptom onset, sex, clinical features, LGMD types, cardiac involvement, muscle biopsy results, family history, and consanguinity.

View Article and Find Full Text PDF

Recessive Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) mutations can cause early onset muscle-eye-brain disease but have also more recently been associated with non-syndromic Retinitis Pigmentosa. In this case series, we describe three sisters affected by non-syndromic autosomal recessive POMGNT1 retinopathy with a report of a new variant. The three patients received care at West Virginia University Eye Institute, including full ophthalmic examination with additional fundus imaging, optical coherence tomography (OCT), electroretinogram (ERG), and visual field testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!