G protein-coupled receptor kinase-interactor 2 (GIT2) is a signaling scaffold protein that also functions as GTPase-activating protein (GAPs) for ADP-ribosylation factor (Arf) small GTP-binding proteins. GIT2 has been implicated in the regulation of G protein-coupled receptor trafficking and cell adhesion and migration. To evaluate possible neurobehavioral functions of GIT2 in vivo, we evaluated GIT2-knockout (KO) mice for abnormalities in emotionality and mood. Male and female GIT2-KO mice presented with anxiety-like behaviors in the zero-maze and light-dark emergence tests. Immobility times in tail suspension were reduced in GIT2-KO males, but were normal in GIT2-KO females. Hence, GIT2-KO mice display anxiety-like behavior in an absence of depressive-like responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648396PMC
http://dx.doi.org/10.1016/j.neulet.2008.12.034DOI Listing

Publication Analysis

Top Keywords

anxiety-like behaviors
8
protein-coupled receptor
8
git2-ko mice
8
mice
4
behaviors mice
4
mice lacking
4
git2
4
lacking git2
4
git2 protein-coupled
4
receptor kinase-interactor
4

Similar Publications

Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL).

View Article and Find Full Text PDF

Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders.

View Article and Find Full Text PDF

Electroacupuncture and Tongbian decoction ameliorate CUMS-induced depression and constipation in mice via TPH2/5-HT pathway of the gut-brain axis.

Brain Res Bull

January 2025

Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. Electronic address:

Depression is commonly associated with gastrointestinal (GI) disorders, such as constipation, which can potentially intensify depressive symptoms. The interplay between these conditions is believed to be facilitated by the gut-brain axis, which suggests a complex bidirectional interaction. Current treatments, such as antidepressants and prokinetics, are often associated with side effects and high recurrence rates, highlighting the need for effective treatments targeting both depression and constipation.

View Article and Find Full Text PDF

Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected.

View Article and Find Full Text PDF

Stress plays a key role in mental, neurological, endocrine, and immune disorders. The zebrafish (Danio rerio) is rapidly gaining popularity as s model organism in stress physiology and neuroscience research. Although the leopard (leo) fish are a common outbred zebrafish strain, their behavioral phenotypes and stress responses remain poorly characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!