SPRINT: a new parallel framework for R.

BMC Bioinformatics

EPCC, The University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH93JZ, UK.

Published: December 2008

Background: Microarray analysis allows the simultaneous measurement of thousands to millions of genes or sequences across tens to thousands of different samples. The analysis of the resulting data tests the limits of existing bioinformatics computing infrastructure. A solution to this issue is to use High Performance Computing (HPC) systems, which contain many processors and more memory than desktop computer systems. Many biostatisticians use R to process the data gleaned from microarray analysis and there is even a dedicated group of packages, Bioconductor, for this purpose. However, to exploit HPC systems, R must be able to utilise the multiple processors available on these systems. There are existing modules that enable R to use multiple processors, but these are either difficult to use for the HPC novice or cannot be used to solve certain classes of problems. A method of exploiting HPC systems, using R, but without recourse to mastering parallel programming paradigms is therefore necessary to analyse genomic data to its fullest.

Results: We have designed and built a prototype framework that allows the addition of parallelised functions to R to enable the easy exploitation of HPC systems. The Simple Parallel R INTerface (SPRINT) is a wrapper around such parallelised functions. Their use requires very little modification to existing sequential R scripts and no expertise in parallel computing. As an example we created a function that carries out the computation of a pairwise calculated correlation matrix. This performs well with SPRINT. When executed using SPRINT on an HPC resource of eight processors this computation reduces by more than three times the time R takes to complete it on one processor.

Conclusion: SPRINT allows the biostatistician to concentrate on the research problems rather than the computation, while still allowing exploitation of HPC systems. It is easy to use and with further development will become more useful as more functions are added to the framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628907PMC
http://dx.doi.org/10.1186/1471-2105-9-558DOI Listing

Publication Analysis

Top Keywords

hpc systems
20
microarray analysis
8
multiple processors
8
parallelised functions
8
exploitation hpc
8
hpc
7
systems
7
sprint
5
sprint parallel
4
parallel framework
4

Similar Publications

Understanding Cyclists' Visual Behavior Using Eye-Tracking Technology: A Systematic Review.

Sensors (Basel)

December 2024

Department of Civil Engineering and Architecture, University of Catania, 64 Santa Sofia Street, 95123 Catania, Italy.

Eye-tracking technologies are emerging in research aiming to understand the visual behavior of cyclists to improve their safety. These technologies gather real-time information to reveal what the cyclists look at and how they respond at a specific location and time. This systematic review investigates the use of eye-tracking systems to improve cyclist safety.

View Article and Find Full Text PDF

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF

The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.

View Article and Find Full Text PDF

A hybrid AI based framework for enhancing security in satellite based IoT networks using high performance computing architecture.

Sci Rep

December 2024

Computer Engineering Department, UET Taxila, Rawalpindi, Punjab, 47050, Pakistan.

IoT device security has become a major concern as a result of the rapid expansion of the Internet of Things (IoT) and the growing adoption of cloud computing for central monitoring and management. In order to provide centrally managed services each IoT device have to connect to their respective High-Performance Computing (HPC) clouds. The ever increasing deployment of Internet of Things (IoT) devices linked to HPC clouds use various medium such as wired and wireless.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!