Hybrid solar cells from P3HT and silicon nanocrystals.

Nano Lett

Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA.

Published: January 2009

We are reporting new hybrid solar cells based on blends of silicon nanocrystals (Si NCs) and poly-3(hexylthiophene) (P3HT) polymer in which a percolating network of the nanocrystals acts as the electron-conducting phase. The properties of composite Si NCs/P3HT devices made by spin-coating Si NCs and P3HT from a common solvent were studied as a function of Si NC size and Si NC/P3HT ratio. The open-circuit voltage and short-circuit current are observed to depend on the Si NC size due to changes in the bandgap and surface-area-to-volume ratio. Under simulated one-sun A.M. 1.5 direct illumination (100 mW/cm2), devices made with 35 wt % Si NCs 3-5 nm in size showed 1.15% power conversion efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl8034338DOI Listing

Publication Analysis

Top Keywords

hybrid solar
8
solar cells
8
silicon nanocrystals
8
cells p3ht
4
p3ht silicon
4
nanocrystals reporting
4
reporting hybrid
4
cells based
4
based blends
4
blends silicon
4

Similar Publications

Short time solar power forecasting using P-ELM approach.

Sci Rep

December 2024

School of Electrical and Information, Hunan University, Changsha, 410083, China.

Accurately predicting solar power to ensure the economical operation of microgrids and smart grids is a key challenge for integrating the large scale photovoltaic (PV) generation into conventional power systems. This paper proposes an accurate short-term solar power forecasting method using a hybrid machine learning algorithm, with the system trained using the pre-trained extreme learning machine (P-ELM) algorithm. The proposed method utilizes temperature, irradiance, and solar power output at instant i as input parameters, while the output parameters are temperature, irradiance, and solar power output at instant i+1, enabling next-day solar power output forecasting.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

Biomimetic photosynthesis, which leverages nanomaterials with light-responsive capabilities, represents an innovative approach for replicating natural photosynthetic processes for green and sustainable energy conversion. In this study, a covalent-organic framework (COF)-based artificial photosynthesis system is realized through the co-assembly of adenosine triphosphate (ATP) synthase and a light-responsive proton generator onto an imine-based COF, RT-COF-1. This system demonstrates an ATP production rate of 0.

View Article and Find Full Text PDF

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Graphdiyne based ZnCdS and NiO dual S-scheme heterojunction boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

December 2024

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China. Electronic address:

As a novel carbon-based material with two-dimensional (2D) characteristics, graphdiyne (GDY) shows great potential in constructing active catalytic sites due to its distinctive atomic configuration and sp/sp conjugated hybrid two-dimensional networks. In this study, the layered GDY was synthesized using the ball milling method, and ZnCdS/Graphdiyne/NiO (ZnCdS/GDY/NiO) composite was synthesized by in-situ composite and physical mixing method. The prepared ZnCdS/GDY/NiO has good photostability outstanding performance in photocatalytic hydrogen production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!