The link between the rheology of 3D aqueous foam and the adhesion of neighboring bubbles is tested by confronting experiments at two different length scales. On the one hand, the dynamics of adhesion are probed by measuring how the shape of two bubbles in contact changes as their center-to-center distance is modulated. On the other hand, the linear viscoelastic behavior of 3D foam prepared with the same soapy solution is characterized by its complex shear modulus. To connect the two sets of data, we present a model of foam viscoelasticity taking into account bubble adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.101.214504 | DOI Listing |
Int J Biol Macromol
December 2024
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:
J Colloid Interface Sci
December 2024
School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia. Electronic address:
Hypothesis: Ion-specific forces in concentrated salt solutions play critical roles in many applications, ranging from biology to engineering, e.g., separating water-soluble minerals in brines by flotation using air bubbles.
View Article and Find Full Text PDFLangmuir
December 2024
Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China.
The transportation and carrying behavior of underwater bubbles have been widely used for an underwater microactuator, cargo displacement assembly, and drug delivery. This study explores a method for underwater cargo transportation using sliding bubbles as a vehicle with directionally guided superhydrophobic wires. By exploitation of the adhesion between superhydrophobic surfaces and bubble interfaces, a bubble is able to transport a superhydrophobic O-ring along a superhydrophobic wire, effectively delivering the O-ring to the water surface.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Física, Benemérita Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570, Mexico.
Leidenfrost puddles exhibit erratic bubble bursts that release vapor trapped beneath the liquid, becoming amorphous and unstable. We report a method to stabilize and design a Leidenfrost puddle. When a thin hydrophilic layer with a suitable design is placed over the liquid, the puddle adopts the layer shape due to adhesive forces and becomes stable.
View Article and Find Full Text PDFNanoscale
December 2024
Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
Two-dimensional (2D) materials with van der Waals stacking have been reported to have extraordinary mechanical and electromechanical properties, which give them revolutionary potential in various fields. However, due to the atomic-scale thickness of these 2D materials, their fascinating properties cannot be effectively characterized in many cases using conventional measurement techniques. Based on typical microscopy techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), a range of microscopy techniques have been developed to systematically quantify the mechanical and electromechanical properties of 2D materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!