Laser channeling of Bethe-Heitler pairs.

Phys Rev Lett

Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany.

Published: November 2008

Electron-positron pair creation is analyzed for an arrangement involving three external fields: a high-frequency gamma photon, the Coulomb field of a nucleus, and a strong laser wave. The frequency of the incoming gamma photon is assumed to be larger than the threshold for pair production in the absence of a laser, and the peak electric field of the laser is assumed to be much weaker than Schwinger's critical field. The total number of pairs produced is found to be essentially unchanged by the laser field, while the differential cross section is drastically modified. We show that the laser can channel the angular distribution of electron-positron pairs into a narrow angular region, which also facilitates experimental observation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.101.203001DOI Listing

Publication Analysis

Top Keywords

gamma photon
8
laser
6
laser channeling
4
channeling bethe-heitler
4
bethe-heitler pairs
4
pairs electron-positron
4
electron-positron pair
4
pair creation
4
creation analyzed
4
analyzed arrangement
4

Similar Publications

Photochromic Sodalites: From Natural Minerals to Advanced Applied Materials.

Acc Chem Res

January 2025

Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.

ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.

View Article and Find Full Text PDF

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT.

Phys Med Biol

January 2025

CREATIS, INSA de Lyon, Bâtiment Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne, 69621 Cedex , FRANCE.

Compton cameras are imaging devices that may improve observation of sources of γ photons. We present CoReSi, a Compton Reconstruction and Simulation software implemented in Python and powered by PyTorch to leverage multi-threading and for easy interfacing with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and for near-field experiments where the images are reconstructed in 3D.

View Article and Find Full Text PDF

Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.

View Article and Find Full Text PDF

Shadow Shield Whole Body Counter (SSWBC) is used to estimate internal dose of radiation workers due to the intake of fission and activation products. The SSWBC geometry was numerically modelled in FLUKA code. The computational model was validated by comparing the experimental and simulated counting efficiencies (CEs), also known as response, using Bhabha Atomic Research Centre (BARC) reference BOttle Mannequin Absorption (BOMAB) phantom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!