We investigate cooperative responses, as well as a microscopic mechanism for vortex switching, in Pb(Zr0.5Ti0.5)O3 nanoparticles under curled electric fields. We find that the domain coexistence mechanism is not valid for toroid switching. Instead dipoles display unusual collective behavior by forming a new vortex with a perpendicular (not opposite) toroid moment. The correlation between the new and original vortices is revealed to be critical for reversing the toroid moment. We further describe a technological approach that is able to drastically reduce the curled electric field needed for vortex switching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.101.197601 | DOI Listing |
Circ Cardiovasc Imaging
January 2025
Division of Cardiology, Department of Medicine, University of California, San Francisco (L.C., S.D., D.B., J.J.T., Q.F., L.T., A.H.R., R.J., S.H., H.H.H., Z.H.T., N.B.S., F.N.D.).
Background: A subset of patients with mitral valve prolapse (MVP), a highly heritable condition, experience sudden cardiac arrest (SCA) or sudden cardiac death (SCD). However, the inheritance of phenotypic imaging features of arrhythmic MVP remains unknown.
Methods: We recruited 23 MVP probands, including 9 with SCA/SCD and 14 with frequent/complex ventricular ectopy.
J Colloid Interface Sci
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. Electronic address:
Photocatalytic oxygen evolution reaction (OER) is pivotal for sustainable energy systems yet lacks high-performance catalysts capable of strong visible light absorption, robust charge dynamics, fast reaction kinetics, and high oxidation capability. Herein, we report the multiscale optimization of carbon nitride through the construction of porous curled carbon nitride nanosheets (CNA-B30) incorporating boron center/cyano group Lewis acid-base pairs (LABPs). The unique chemical and structural features of CNA-B30 extended the photoabsorption edges of π → π* and n → π* electronic transitions to 470 nm and 715 nm, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Henan International Joint Laboratory of Carbon Fiber Composites, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China.
Nanoscale
August 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
Two-dimensional (2D) periodic arrays of conductive polymers represent attractive platforms for wiring functional molecules into the integrated circuits of molecular electronics. However, the large-scale assembly of polymer periodic arrays at the molecular level faces challenges such as curling, twisting, and aggregation. Here, we assembled the periodic arrays of long-chain poly(3-hexylthiophene-2,5-diyl) (P3HT, = 65 k) at the solid-liquid interface by applying an electric field, within which the charged chain segments were aligned.
View Article and Find Full Text PDFBioact Mater
September 2024
Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!