Objective: Oxidized phospholipids (OxPLs) that are abundant in atherosclerotic lesions are increasingly recognized as context-dependent lipid mediators demonstrating both pro- and antiinflammatory activities. Molecular mechanisms of their effects are largely unknown. Here we present novel information on the mechanisms whereby OxPLs modulate activation of TLR4 by lipopolysaccharide (LPS).
Methods And Results: We show, using several cell types and various inflammatory genes as readouts, that different classes and molecular species of OxPLs do not stimulate TLR4 but exert prominent inhibitory effects on LPS-induced reactions. Our data demonstrate that binding of OxPLs to the LPS-binding protein (LBP) and CD14 prevents recognition of LPS by these proteins, thus impairing activation of TLR4. In addition, OxPLs inhibited LBP- and CD14-independent activation of TLR4 by the synthetic TLR4 agonist E6020 indicating that in parallel with LBP and CD14, OxPLs target cell-associated steps in TLR4 cascade.
Conclusions: Our data suggest that OxPLs inhibit action of LPS via a multi-hit mechanism. These results support the notion that OxPLs are endogenous inhibitors of TLR4 produced in response to oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.108.173799 | DOI Listing |
Biochimie
January 2025
Jagiellonian University Medical College, Faculty of Health Sciences, Department of Medical Physiology, Chair of Biomedical Sciences, 12 Michalowskiego st., 33-332 Cracow, Poland.
Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China. Electronic address:
Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis.
View Article and Find Full Text PDFBJC Rep
January 2025
Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.
View Article and Find Full Text PDFPLoS One
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.
View Article and Find Full Text PDFJ Mol Endocrinol
January 2025
L Maletinska, Biochemistry, Czech Academy of Sciences, Praha, Czech Republic.
Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!