One of the strategies for decreasing the consumption of herbicides consists in improving their uptake and efficiency. It was suggested that the photodegradation of herbicides due to sunlight results in a greater demand of herbicides to be introduced into the environment in order to ensure the plant protection activity. Moreover, an ecotoxicological effect of the photoproducts needs to be clarified. The physiological response of Zea mays and Sinapis alba (weed) to sulcotrione and its main photoproduct, called chromone (xanthene-1,9-dione-3,4-dihydro-6-methylsulfonyl), was evaluated under controlled conditions in a growth chamber. The dose-response effects were determined on Z. mays and S. alba. Using the sulcotrione (doses ranging from 1 to 9mg per plant), the physiological parameters indicated a decrease of photosynthesis for the S. alba species while the Z. mays species were only slightly affected. On the contrary, the chromone had no herbicide activity on both species. The sulcotrione is known to block 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme. The differences between the parent herbicide and the photoproduct could be ascribed to drastic structural modifications. We have shown that the chromone probably do not block the HPPD active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.11.017 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.
Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
While circular RNAs (circRNAs) exhibit lower abundance compared to corresponding linear RNAs, they demonstrate potent biological functions. Nevertheless, challenges arise from the low concentration and distinctive structural features of circRNAs, rendering existing methods operationally intricate and less sensitive. Here, we engineer an intelligent tetrahedral DNA framework (TDF) possessing precise spatial pattern-recognition properties with exceptional sensing speed and sensitivity for circRNAs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biology, California State University Northridge, Northridge, CA, USA.
The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!