Three-dimensional (3D) twisted projection imaging (TPI) trajectory has a unique advantage in sodium ((23)Na) imaging on clinical MRI scanners at 1.5 or 3 T, generating a high signal-to-noise ratio (SNR) with a short acquisition time (approximately 10 min). Parallel imaging with an array of coil elements transits SNR benefits from small coil elements to acquisition efficiency by sampling partial k-space. This study investigates the feasibility of parallel sodium imaging with emphases on SNR and acceleration benefits provided by the 3D TPI trajectory. Computer simulations were used to find available acceleration factors and noise amplification. Human head studies were performed on clinical 1.5/3-T scanners with four-element coil arrays to verify simulation outcomes. In in vivo studies, proton ((1)H) data, however, were acquired for concept-proof purpose. The sensitivity encoding (SENSE) method with the conjugate gradient algorithm was used to reconstruct images from accelerated TPI-SENSE data sets. Self-calibration was employed to estimate coil sensitivities. Noise amplification in TPI-SENSE was evaluated using multiple noise trials. It was found that the acceleration factor was as high as 5.53 (corresponding to acceleration number 2 x 3, ring-by-rotation), with a small image error of 6.9% when TPI projections were reduced in both polar (ring) and azimuthal (rotation) directions. The average noise amplification was as low as 98.7%, or 27% lower than Cartesian SENSE at that acceleration factor. The 3D nature of both TPI trajectory and coil sensitivities might be responsible for the high acceleration and low noise amplification. Consequently, TPI-SENSE may have potential advantages for parallel sodium imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2008.10.008 | DOI Listing |
J Magn Reson
October 2019
Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL 60612, United States.
Quantitative measurement of the tissue sodium concentration (TSC) provides a metric for tissue cell volume fraction for monitoring tumor responses to therapy and neurodegeneration in the brain as well as applications outside the central nervous system such as the fixed charge density in cartilage. Despite the low detection sensitivity of the sodium MR signal compared to the proton signal and the requirement for a long repetition time to minimize longitudinal magnetization saturation, acquisition time has been reduced to less than 10 min for a nominal isotropic voxel size of 3.3 mm with the improved acquisition efficiency of twisted projection imaging (TPI) at 9.
View Article and Find Full Text PDFMagn Reson Imaging
April 2015
Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
A method for uniform k-space sampling of 3D ultra-short echo time (UTE) techniques with anisotropic resolution in one direction is introduced to increase signal-to-noise ratio (SNR). State-of-the-art acquisition schemes for sodium MRI with radial (projection reconstruction) and twisting (twisted projection imaging (TPI)) trajectories are investigated regarding SNR efficiency, blurring behavior under T2(⁎) decay, and measurement time in case of anisotropic field-of-view and resolution. 3D radial and twisting trajectories are redistributed in k-space for UTE sodium MRI with homogeneous noise distribution and optimal SNR efficiency, if T2(⁎) decay can be neglected.
View Article and Find Full Text PDFMagn Reson Imaging
June 2009
MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Three-dimensional (3D) twisted projection imaging (TPI) trajectory has a unique advantage in sodium ((23)Na) imaging on clinical MRI scanners at 1.5 or 3 T, generating a high signal-to-noise ratio (SNR) with a short acquisition time (approximately 10 min). Parallel imaging with an array of coil elements transits SNR benefits from small coil elements to acquisition efficiency by sampling partial k-space.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2005
Centro Universitário Barão de Mauá, Rua Ramos de Azevedo, 423 14090-180, Ribeirão Preto, São Paulo, Brazil.
Consider a medium characterized by N points whose coordinates are randomly generated by a uniform distribution along the edges of a unitary d-dimensional hypercube. A walker leaves from each point of this disordered medium and moves according to the deterministic rule to go to the nearest point which has not been visited in the preceding mu steps (deterministic tourist walk). Each trajectory generated by this dynamics has an initial nonperiodic part of t steps (transient) and a final periodic part of p steps (attractor).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!