Alzheimer's disease (AD) is a progressive and degenerative brain disorder that has emerged as one of the major public health problems in adults. Unfortunately, its molecular pathology and therapeutic strategies remain elusive. Because there are multiple factors closely indicated in the pathogenesis of AD, multiple drug therapy will be required to address the varied pathological aspects of this disease. Existing pharmacological approaches with one-molecule-one-target are limited in their ability to modify the pathology of AD. Novel therapeutics strategies comprise multifunctional compounds specifically designed to target concurrently on different sites at multifactorial etiopathogenesis of AD, thereby providing greater therapeutic efficacy. Over the past decade, our group has developed several series of dimeric acetylcholinesterase (AChE) inhibitors derived from tacrine and huperzine A, a unique anti-Alzheimer's drug originally discovered from a traditional Chinese medicinal plant. Bis(7)-Cognitin, one of our novel dimers, through inhibition of AChE, N-methyl-D-aspartate receptor, nitric oxide synthase, and amyloid precursor protein/beta-amyloid cascade concurrently, possesses remarkable neuroprotective activities. More importantly, the synergism between these targets might serve as one of the most effective therapeutic strategies to arrest/modify pathological process of AD in addition to improving the cognitive functions for AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084266 | PMC |
http://dx.doi.org/10.1016/j.nurt.2008.10.040 | DOI Listing |
Folia Microbiol (Praha)
January 2025
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.
View Article and Find Full Text PDFCell Death Dis
January 2025
Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.
View Article and Find Full Text PDFActa Med Indones
October 2024
Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia..
Background: Direct acting antivirals (DAAs) have demonstrated remarkable efficacy, in achieving hepatitis C viral (HCV) elimination rates higher than 90%. One particular concern associated with treatment failure is the emergence of resistance associated substitutions (RASs) in the genome. The occurrence of RASs highlights the adaptability and resilience of the HCV.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
February 2025
Neurobrucellosis is a neurological disorder caused by Brucella infection. It typically occurs as part of the multisystem involvement of brucellosis, or may also present as brucellosis. The existing clinical practice guidelines and expert consensus on human brucellosis are outdated and provide limited guidance specific to the diagnosis and management of neurobrucellosis, failing to meet the evolving needs of healthcare providers and patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!