Recently there has been a resurging interest in developing multi-functional drugs to treat diseases with complex pathological mechanisms. Such drug molecules simultaneously target multiple etiologies that have been found to be important modulators in specific diseases. This approach has significant promise and may be more effective than using one compound specific for one drug target or, by a polypharmaceutical approach, using a cocktail of two or more drugs. Polycyclic ring structures are useful as starting scaffolds in medicinal chemistry programs to develop multi-functional drugs, and may also be useful moieties added to existing structures to improve the pharmacokinetic properties of drugs currently used in the clinic or under development. This review attempts to provide a synopsis of current published research to exemplify the use of polycyclic compounds as starting molecules to develop multi-functional drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084265PMC
http://dx.doi.org/10.1016/j.nurt.2008.10.037DOI Listing

Publication Analysis

Top Keywords

multi-functional drugs
12
polycyclic compounds
8
develop multi-functional
8
drugs
5
compounds ideal
4
ideal drug
4
drug scaffolds
4
scaffolds design
4
design multiple
4
multiple mechanism
4

Similar Publications

Counteracting Alzheimer's disease normalizing neurovascular unit with a self-regulated multi-functional nano-modulator.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.

The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

Synergistic effects of doxorubicin loaded silk fibroin nanoparticles and Cu-TiO nanoparticles for local chemo-sonodynamic therapy against breast cancer.

Int J Biol Macromol

December 2024

Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK. Electronic address:

A promising new approach to mitigate the adverse effects of chemotherapeutic drugs on healthy tissues involves combining sonodynamic therapy with topical chemotherapy to enhance the therapeutic efficacy of anticancer drugs. In this study, we introduce a multi-functional in situ chitosan hydrogel (CS) containing silk fibroin nanoparticles (SFNPs) loaded with doxorubicin (DOXSFNPs) and CuO/TiO nanoparticles (CTNPs) for combination therapy. The developed DOXSFNPs exhibited a size of 257 ± 6 nm, a zeta potential of -14.

View Article and Find Full Text PDF

While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology.

View Article and Find Full Text PDF

Research Progress on the Application of Natural Medicines in Biomaterial Coatings.

Materials (Basel)

November 2024

School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

With the continuous progress of biomedical technology, biomaterial coatings play an important role in improving the performance of medical devices and promoting tissue repair and regeneration. The application of natural medicine to biological materials has become a hot topic due to its diverse biological activity, low toxicity, and wide range of sources. This article introduces the definition and classification of natural medicines, lists some common natural medicines, such as curcumin, allicin, chitosan, tea polyphenols, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!