Unless the fabrication error control is well treated, it easily causes overetched fabrication errors, which causes the resonant peak value deviation during the fabrication process of guided-mode resonant filters (GMRFs). Hence, the fabrication error control becomes a key point for improving the performance of GMRF. We find that, within the range of the groove depth from 93 to 105 nm, the relationship between the overetched error and the resonant peak value deviation is nearly linear, which means that we can compensate the reflectance response deviation and reduce the resonant peak value deviation by the method of covering the layer film on the GMRF. Simulation results show that the deviation is compensated perfectly by this way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.34.000070 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Radiology, University of Washington, Seattle, WA, USA.
Background: Ductal carcinoma in situ (DCIS) is overtreated, in part because of inability to predict which DCIS cases diagnosed at core needle biopsy (CNB) will be upstaged at excision. This study aimed to determine whether quantitative magnetic resonance imaging (MRI) features can identify DCIS at risk of upstaging to invasive cancer.
Methods: This prospective observational clinical trial analyzed women with a diagnosis of DCIS on CNB.
Angew Chem Int Ed Engl
January 2025
Shenzhen University, College of Materials Science and Engineering, Xueyuan Avenue, 518000, Shenzhen, CHINA.
The development of pure-green organic emitters with ideal emission peak and ultra-narrow full-widths at half-maximum (FWHMs) remains a formidable challenge. Herein, we report two new green emitters, CNBN and MCNBN, which achieve extremely narrow FWHMs by synergistic rigid π-extension and cyano-substitution for sky-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) core. The introduction of cyano groups induces red-shifts of emission to green region and dramatically minimize the FWHMs.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFFront Neurosci
January 2025
Graduate Program in Electrical Engineering, Federal University of Pará - UFPA, Belém, Brazil.
Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Ningbo Hangzhou Bay Hospital(Ningbo Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai),Ningbo315336, China.
To develop a predictive model for improvement of ejection fraction 1 year after heart failure with reduced ejection fraction (HFrEF) following acute ST-segment elevation myocardial infarction (STEMI). This nested case-control study included STEMI patients diagnosed with HFrEF from a prospective multicenter multimodality imaging cohort between August 2014 and March 2021. Based on the improvement of left ventricular ejection fraction (LVEF) at baseline and 1-year follow-up, the patients were classified into the heart failure with improved ejection fraction (HFimpEF) group and the persistent HFrEF group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!