Many Saccharomyces cerevisiae mutants defective in the SUMO pathway accumulate elevated levels of the native 2 microm circle plasmid (2 microm). Here we show that accumulation of 2 microm in the SUMO pathway mutants siz1Delta siz2Delta, slx5Delta, and slx8Delta is associated with formation of an aberrant high-molecular-weight (HMW) form of 2 microm. Characterization of this species from siz1Delta siz2Delta showed that it contains tandem copies of the 2 mum sequence as well as single-stranded DNA. Accumulation of this species requires both the 2 microm-encoded Flp recombinase and the cellular homologous recombination repair (HRR) pathway. Importantly, reduced SUMO attachment to Flp is sufficient to induce formation of this species. Our data suggest a model in which Flp that cannot be sumoylated causes DNA damage, whose repair via HRR produces an intermediate that generates tandem copies of the 2 microm sequence. This intermediate may be a rolling circle formed via break-induced replication (BIR), because mutants defective in BIR contain reduced levels of the HMW form. This work also illustrates the importance of using cir(o) strains when studying mutants that affect the yeast SUMO pathway, to avoid confusing direct functions of the SUMO pathway with secondary effects of 2 microm amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642740PMC
http://dx.doi.org/10.1091/mbc.e08-06-0659DOI Listing

Publication Analysis

Top Keywords

sumo pathway
16
sumo attachment
8
attachment flp
8
flp recombinase
8
microm circle
8
circle plasmid
8
mutants defective
8
siz1delta siz2delta
8
hmw form
8
tandem copies
8

Similar Publications

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

SENP3: Cancers and diseases.

Biochim Biophys Acta Rev Cancer

January 2025

Kunming University of Science and Technology, Medical School, Kunming 650500, China. Electronic address:

SUMOylation is a protein modification process that involves the covalent attachment of a small ubiquitin-like modifier (SUMO) to a specific lysine residue on the target protein. This modification can influence the function, localization, stability, and interactions of proteins, thereby regulating various cellular processes. Altering the SUMOylation of certain proteins is expected to be a potential approach for treating specific cancers and diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how the SUMOylation inhibitor TAK981 affects oxidative damage caused by hydrogen peroxide (H2O2) in human retinal pigment epithelial cells (ARPE-19) and its underlying mechanisms.
  • An oxidative damage model was created, and various concentrations of TAK981 were tested to see their impact on cell viability, levels of oxidative stress markers, and inflammatory cytokines, while comparing them to control and model groups.
  • Results showed that H2O2 reduced cell viability significantly, while TAK981 treatment improved cell survival and reduced oxidative damage and inflammation markers, indicating its potential protective effects against oxidative stress in ARPE-19 cells.
View Article and Find Full Text PDF

The 26S proteasome is a crucial protease complex responsible for degrading specific proteins to maintain cellular function during salt stress. Previous studies have shown that GmRPN11d, a subunit of the regulatory particle in soybean, is upregulated in response to short-term salt stress. This research discovered that GmRPN11d is localized in the nucleus and cytoplasm, with its expression increasing under high salinity and other stress conditions.

View Article and Find Full Text PDF

SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy.

Cell Death Differ

January 2025

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!