We present a method to create multi-layered engineered tissue composites consisting of human skin fibroblasts and keratinocytes which mimic skin layers. Three-dimensional (3D) freeform fabrication (FF) technique, based on direct cell dispensing, was implemented using a robotic platform that prints collagen hydrogel precursor, fibroblasts and keratinocytes. A printed layer of cell-containing collagen was crosslinked by coating the layer with nebulized aqueous sodium bicarbonate. The process was repeated in layer-by-layer fashion on a planar tissue culture dish, resulting in two distinct cell layers of inner fibroblasts and outer keratinocytes. In order to demonstrate the ability to print and culture multi-layered cell-hydrogel composites on a non-planar surface for potential applications including skin wound repair, the technique was tested on a poly(dimethylsiloxane) (PDMS) mold with 3D surface contours as a target substrate. Highly viable proliferation of each cell layer was observed on both planar and non-planar surfaces. Our results suggest that organotypic skin tissue culture is feasible using on-demand cell printing technique with future potential application in creating skin grafts tailored for wound shape or artificial tissue assay for disease modeling and drug testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.12.009DOI Listing

Publication Analysis

Top Keywords

fibroblasts keratinocytes
12
human skin
8
skin fibroblasts
8
three-dimensional freeform
8
freeform fabrication
8
tissue culture
8
skin
6
multi-layered culture
4
culture human
4
fibroblasts
4

Similar Publications

Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes.

View Article and Find Full Text PDF

Protective Effects of Hydrogen Treatment Against High Glucose-Induced Oxidative Stress and Apoptosis via Inhibition of the AGEs/RAGE/NF-κB Signaling Pathway in Skin Cells.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H2), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

View Article and Find Full Text PDF

Comparative toxicity study of hyaluronic acid fillers crosslinked with 1,4-butanediol diglycidyl ether or poly (ethylene glycol) diglycidyl ether.

Int J Biol Macromol

January 2025

Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:

Dermal fillers comprising injectable hyaluronic acid (HA) are widely used for soft tissue augmentation, often using crosslinking agents such as 1,4-butanediol diglycidyl ether (BDDE) or poly (ethylene glycol) diglycidyl ether (PEGDE). Here, we assessed the physical properties, toxicity, and inflammatory reactions of HA fillers crosslinked with either BDDE (HA-BDDE filler) or PEGDE (HA-PEGDE filler) in in vitro and in vivo investigations. The HA-PEGDE filler exhibited higher G', tan δ, G*, and complex viscosity values compared to the HA-BDDE filler, while maintaining similar cohesivity.

View Article and Find Full Text PDF

Background: Skin pigmentation disorders may increase patients' psychological burdens. Consequently, they are increasingly attracting attention. Dermal fibroblasts have been shown to regulate pigmentation by secreting soluble factors.

View Article and Find Full Text PDF

Atelocollagen-based hydrogel loaded with's extract for treatment of type 2 diabetic wounds.

Biomed Mater

January 2025

Department of Medical Microbiology, Kocaeli Universitesi, Faculty of Medicine Molecular Research and Antibody Laboratory, Kocaeli, 41001, TURKEY.

Diabetes, a chronic metabolic disease, causes complications such as chronic wounds which are difficult to cure. New treatments have been investigated to accelerate the wound healing. In this study, a novel wound dressing from fibroblast-laden atelocollagen-based hydrogel with Cotinus coggygria's extract was developed for diabetic wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!