It has previously been reported that the incidence rate of intervertebral disc disease including cervical and lumbar vertebra is at the 8th position among the chronic and difficult treated diseases in China. There are great challenges on the improving diagnosis and treatment as well as reducing recrudescence of this degenerative disease. It was well known that the degeneration and bulge or herniatation of intervertebral discs are the main reasons for it, and the treatment for it always focuses on the disc recovery. However, the discrepancy of the effect and expectation indicated that there were other reasons for it. Based on the clinical knowledge of intervertebral discs disease and combined with the cognition of Traditional Chinese Medicine,we proposed that the pathogenesis of intervertebral disc disease was Gucuofeng and Jinchucao, which meant that the improper location of diapophysis and the declined of muscle strength may cause the unstable of spine, unstable spine thus aggravated the semiluxation of diapophysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

intervertebral disc
12
disc disease
12
intervertebral discs
8
unstable spine
8
intervertebral
5
disease
5
[diagnosis treatment
4
treatment intervertebral
4
disc
4
disease based
4

Similar Publications

A multifunctional mitochondria-protective gene delivery platform promote intervertebral disc regeneration.

Biomaterials

December 2024

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Intervertebral disc degeneration (IDD) is a deleterious condition driven by localized inflammation and the associated disruption of the normal homeostatic balance between anabolism and catabolism, contributing to progressive functional abnormalities within the nucleus pulposus (NP). Despite our prior evidence demonstrating that a miR-21 inhibitor can have regenerative effects that counteract the progression of IDD, its application for IDD treatment remains limited by the inadequacy of current local delivery systems. Here, an injectable tannic acid (TA)-loaded hydrogel gene delivery system was developed and used for the encapsulation of a multifunctional mitochondria-protecting gene nanocarrier (PHs).

View Article and Find Full Text PDF

Nanotechnology-Enhanced Pharmacotherapy for Intervertebral Disc Degeneration Treatment.

Int J Nanomedicine

January 2025

Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi, 710000, People's Republic of China.

Intervertebral disc degeneration (IDD) is a primary contributor to chronic back pain and disability globally, with current therapeutic approaches often proving inadequate due to the complex nature of its pathophysiology. This review assesses the potential of nanoparticle-driven pharmacotherapies to address the intricate challenges presented by IDD. We initially analyze the primary mechanisms driving IDD, with particular emphasis on mitochondrial dysfunction, oxidative stress, and the inflammatory microenvironment, all of which play pivotal roles in disc degeneration.

View Article and Find Full Text PDF

Study Design: Low back pain (LBP) is a widespread clinical symptom affecting nearly all age groups and is a leading cause of disability worldwide. Degenerative changes in the spine and paraspinal tissues primarily contribute to the etiology of LBP.

Objectives: We conducted this systematic review of animal models of paraspinal muscle (PSM) degeneration secondary to degenerative intervertebral disc (IVD), providing a comprehensive evaluation of PSM structural changes observed in these models at both macroscopic and microscopic levels.

View Article and Find Full Text PDF

Purpose: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, and developing new molecular drugs and targets for IDD is a new direction for future treatment strategies. The aim of this study is to investigate the effects and mechanisms of tomatidine in ameliorating lumbar IDD.

Methods: Nucleus pulposus cells (NPCs) exposed to lipopolysaccharides were used as an in vitro model to investigate changes in the expression of extracellular matrix components and associated signaling pathway molecules.

View Article and Find Full Text PDF

Introduction: Up to one in five will suffer from osteoporotic vertebral fracture within their lifetime. Accurate fracture prediction poses challenges using bone mineral density (BMD) measures. Trabecular bone strains may be influenced by the underlying intervertebral disc (IVD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!