Bottoms up! A discrete metallo-supramolecular nanoball (see picture), synthesized by using "bottom-up" methodologies, uniquely undergoes a solvent-sensitive, physically addressable electronic spin switching. The switching occurs by thermal, light, or solvent perturbation, where importantly it can be switched "on" or "off" by green or red laser irradiation, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200805178DOI Listing

Publication Analysis

Top Keywords

thermal light
8
nanoscale molecular
4
molecular switch
4
switch triggered
4
triggered thermal
4
light guest
4
guest perturbation
4
perturbation bottoms
4
bottoms up!
4
up! discrete
4

Similar Publications

: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.

View Article and Find Full Text PDF

Herbicidal Formulations with Plant-Based Compounds to Control , and Weeds.

Plants (Basel)

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 5000, Argentina.

Numerous studies have shown the potential effect of bioactive agents against weeds. In this study, we developed two binary formulations with nonanoic acid, citral, or thymoquinone as herbicides and evaluated their physicochemical properties. The presence of the bioactive compounds in the formulations was confirmed through FTIR spectroscopy.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Impact of Combined Thermo- and Photo-Oxidation on the Physicochemical Properties of Oxo-Biodegradable Low-Density Polyethylene Films.

Polymers (Basel)

January 2025

Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 Col. Chuburná de Hidalgo, Merida 97205, Mexico.

This research addresses the study of the combined effect of two abiotic treatments, a thermo-oxidative treatment followed by a photo-oxidative treatment with ultraviolet light, on the physicochemical properties of commercially available low-density polyethylene films with an oxo-degradant additive (OXOLDPE) and without (LDPE). The change in the oxidized film properties was characterized using FTIR, XRD, TGA, GPC, and SEM analytical techniques. The results indicated that the increment in carbonyl index (CI) and crystallinity percentage (X) was higher for those films that received the combined oxidative treatments compared with those that received only one of them, thermo- or photo-oxidative treatment.

View Article and Find Full Text PDF

Rapid heating cycle molding technology has recently emerged as a novel injection molding technique, with the uniformity of temperature distribution on the mold cavity surface being a critical factor influencing product quality. A numerical simulation method is employed to investigate the rapid heating process of molds and optimize heating power, with the positions of heating rods as variables. The temperature uniformity coefficient is an indicator used to assess the uniformity of temperature distribution within a system or process, while the thermal response rate plays a crucial role in evaluating the heating efficiency of a heating system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!