In vitro and in vivo degradation of poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) elastomers.

J Biomed Mater Res A

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E25-342, Cambridge, Massachusetts 02139, USA.

Published: December 2009

Biomaterials with a wide range of tunable properties are desirable for application-specific purposes. We have previously developed a class of elastomeric poly(ester amides) based on the amine alcohol 1,3-diamino-2-hydroxypropane termed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) or APS. In this work, we have synthesized and characterized formulations of APS polymers and studied the degradation of these polymers in vitro and in vivo. It was found that the chemical, physical, and mechanical properties of APS polymers could be tuned by adjusting monomer feed ratios and polymerization conditions. The degradation kinetics could also be greatly influenced by altering the formulation of APS polymers. In vivo degradation half-lives ranged from 6 to approximately 100 weeks. Furthermore, the dominant degradation mechanism (i.e. hydrolytic or enzymatic) could be controlled by adjusting the specific formulation of the APS polymer. On the basis of the observed in vitro and in vivo biodegradation phenomena, we also propose that the primary modes of degradation are composition dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32306DOI Listing

Publication Analysis

Top Keywords

vitro vivo
12
aps polymers
12
vivo degradation
8
poly13-diamino-2-hydroxypropane-co-polyol sebacate
8
formulation aps
8
degradation
6
aps
5
degradation poly13-diamino-2-hydroxypropane-co-polyol
4
sebacate elastomers
4
elastomers biomaterials
4

Similar Publications

Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.

View Article and Find Full Text PDF

Acne vulgaris is the 8th most commonly prevailing skin disorder worldwide. Its pervasiveness has been predominant in juveniles, especially males, during adolescence and in females during adulthood. The lifestyle and nutrition adopted have been significantly reported to impact the occurrence and frequency of acne.

View Article and Find Full Text PDF

Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived .

JACS Au

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements.

View Article and Find Full Text PDF

Purpose: To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo.

Methods: The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design.

View Article and Find Full Text PDF

CO-loaded hemoglobin/EGCG nanoparticles functional coatings for inflammation modulation of vascular implants.

Regen Biomater

December 2024

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

During the implantation process of cardiovascular implants, vascular damage caused by inflammation occurs, and the inflammatory process is accompanied by oxidative stress. Currently, carbon monoxide (CO) has been demonstrated to exhibit various biological effects including vasodilatation, antithrombotic, anti-inflammatory, apoptosis-inducing and antiproliferative properties. In this study, hemoglobin/epigallocatechin-3-gallate (EGCG) core-shell nanoparticle-containing coating on stainless steel was prepared for CO loading and inflammation modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!