Osteoporosis attacks 10% of the population worldwide. Humans or even the model animals of the disease cannot recover from porous bone. Regeneration in skeletal elements is the unique feature of our newly investigated osteoporosis model, the red deer (Cervus elaphus) stag. Cyclic physiological osteoporosis is a consequence of the annual antler cycle. This phenomenon raises the possibility to identify genes involved in the regulation of bone mineral density on the basis of comparative genomics between deer and human. We compare gene expression activity of osteoporotic and regenerating rib bone samples versus autumn dwell control in red deer by microarray hybridization. Identified genes were tested on human femoral bone tissue from non-osteoporotic controls and patients affected with age-related osteoporosis. Expression data were evaluated by Principal Components Analysis and Canonical Variates Analysis. Separation of patients into a normal and an affected group based on ten formerly known osteoporosis reference genes was significantly improved by expanding the data with newly identified genes. These genes include IGSF4, FABP3, FABP4, FKBP2, TIMP2, TMSB4X, TRIB, and members of the Wnt signaling. This study supports that extensive comparative genomic analyses, here deer and human, provide a novel approach to identify new targets for human diagnostics and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-008-0413-7DOI Listing

Publication Analysis

Top Keywords

genes involved
8
red deer
8
deer human
8
identified genes
8
genes
6
osteoporosis
6
deer
5
human
5
identifying novel
4
novel genes
4

Similar Publications

How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).

View Article and Find Full Text PDF

Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors.

View Article and Find Full Text PDF

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Ribosome profiling and single-cell RNA sequencing identify the unfolded protein response as a key regulator of pigeon lactation.

Zool Res

January 2025

National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.

Pigeons and certain other avian species produce a milk-like secretion in their crop sacs to nourish offspring, yet the detailed processes involved are not fully elucidated. This study investigated the crop sacs of 225-day-old unpaired non-lactating male pigeons (MN) and males initiating lactation on the first day after incubation (ML). Using RNA sequencing, ribosome profiling, and single-cell transcriptome sequencing (scRNA-seq), we identified a significant up-regulation of genes associated with ribosome assembly and protein synthesis in ML compared to MN.

View Article and Find Full Text PDF

Among the various sources of selenium supplementations, the Se-methylselenocysteine (SeMC) is a natural organic selenium compound that has been demonstrated to have multiple advantages in terms of metabolism efficiency and biosafety in animals. Nevertheless, the genome-wide impact of SeMC on gene transcription remains to be elucidated. In this study, we employed an LPS-stimulated chicken HD11 macrophage-like cell model to identify the principal transcription factors involved in transcriptome regulation responsible for SeMC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!