Additional amplifications of SERS via an optofluidic CD-based platform.

Lab Chip

Biomolecular Nanotechnology Center, Berkeley Sensor & Actuator Center, Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, USA.

Published: January 2009

In this paper, signal amplifications of surface-enhanced Raman scattering (SERS) are realized by an optofluidic compact disc (CD)-based preconcentration method for effective label-free environmental and biomolecular detections. The preconcentration of target molecules is accomplished through the accumulation of adsorbed molecules on SERS-active sites by repeating a 'filling-drying' cycle of the assay solution in the optofluidic CD platform. After 30 cycles, the clear and high SERS signal of rhodamine 6G of 1 nM is readily detected. In addition to the preconcentration-based signal amplification by the optofluidic SERS system on the CD platform, we introduce a controlled precipitation of gold nanoparticles by CuSO4 for SERS substrates. This method provides high-throughput, high-sensitive and large-area uniform SERS substrates on the optofluidic CD platform. The uniform SERS signals from different positions in spots of 3 mm2 on the different CDs gives us confidence in the reliability and stability of our SERS substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b812067fDOI Listing

Publication Analysis

Top Keywords

sers substrates
12
sers
8
optofluidic platform
8
uniform sers
8
optofluidic
5
additional amplifications
4
amplifications sers
4
sers optofluidic
4
optofluidic cd-based
4
platform
4

Similar Publications

Carbaryl is a broad-spectrum carbamate fungicide that may pose a threat to ecosystems and human health. To prevent and control the harm caused by excessive application of carbaryl, a full-dimensional divergence effect SERS sensor has been constructed. Biodegradable paper chips were used as sensor substrates.

View Article and Find Full Text PDF

Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:

Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.

View Article and Find Full Text PDF

A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus.

Anal Chim Acta

February 2025

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:

Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.

View Article and Find Full Text PDF

A portable paper-based surface enhanced Raman scattering platform for Al sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemistry, Liaoning University, Shenyang 110036, China. Electronic address:

The adverse effects of Al ions on human health necessitate the development of ultra-sensitive detection methods for Al ions. In this regard, the compact and portable design of the detection substrate is of utmost importance for achieving in-situ and sensitive detection of Al ions. In our study, we have successfully developed a surface-enhanced Raman scattering (SERS) platform with gold nanoparticles (Au NPs) that was modified with histidine (His) and 4-mercaptobenzoic acid (4-MBA) for the SERS detection of Al ions.

View Article and Find Full Text PDF

Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids.

Talanta

January 2025

Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China. Electronic address:

The widespread accumulation of androgenic steroid endocrine disruptors in water and food has garnered increasing attention due to their significant risks to ecosystems and human health. These steroids, which cannot be completely eliminated, highlight the urgent need for advanced detection technologies. In this study, we present a novel emulsion-induced interface-anisotropic assembly strategy to synthesize bowl-like mesoporous polydopamine (PDA) particles, which exhibit high sensitivity in surface-enhanced Raman scattering (SERS) detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!