Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2600564 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003956 | PLOS |
Front Med (Lausanne)
December 2024
Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Sci Rep
January 2025
Institute of Molecular and Clinical Ophthalmology Basel (IOB), Mittlere Strasse 91, 4031, Basel, Switzerland.
The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.
View Article and Find Full Text PDFMult Scler Relat Disord
December 2024
Istanbul University, Aziz Sancar Institute for Experimental Medical Research, Department of Neuroscience, Istanbul, Turkiye.
Objective: Multiple sclerosis (MS) may present with predominant involvement of the spinal cord and optic nerve (MS/w-SCON) and mimic other autoimmune inflammatory demyelinating disorders (AIDD) such as neuromyelitis optica spectrum disorder (NMOSD), and relapsing inflammatory optic neuritis (RION). Thus, biomarkers are required for effective differential diagnosis of AIDD.
Methods: Patients with MS/w-SCON (n = 20), MS without involvement of SCON (MS/wo-SCON) (n = 22), NMOSD (n = 16), RION (n = 15) and healthy individuals (n = 21) were included.
Ophthalmol Ther
December 2024
Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
Introduction: This study aims to summarize the retinal and choroidal microvascular features detected by optical coherence tomography angiography (OCTA) in the affected and fellow eyes of patients with retinal vein occlusion (RVO).
Methods: A comprehensive search of the PubMed, Embase, and Ovid databases was conducted to identify studies comparing OCTA metrics among RVO, RVO-fellow, and control eyes. Outcomes of interest included parameters related to foveal avascular zone (FAZ) and fovea- and optic nerve head (ONH)-centered perfusion measurements of superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris layer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!