Patterns of behavior exhibited by mice in their home cages reflect the function and interaction of numerous behavioral and physiological systems. Detailed assessment of these patterns thus has the potential to provide a powerful tool for understanding basic aspects of behavioral regulation and their perturbation by disease processes. However, the capacity to identify and examine these patterns in terms of their discrete levels of organization across diverse behaviors has been difficult to achieve and automate. Here, we describe an automated approach for the quantitative characterization of fundamental behavioral elements and their patterns in the freely behaving mouse. We demonstrate the utility of this approach by identifying unique features of home cage behavioral structure and changes in distinct levels of behavioral organization in mice with single gene mutations altering energy balance. The robust, automated, reproducible quantification of mouse home cage behavioral structure detailed here should have wide applicability for the study of mammalian physiology, behavior, and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634928 | PMC |
http://dx.doi.org/10.1073/pnas.0809053106 | DOI Listing |
ACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
The widespread application of anode-free lithium metal batteries (AFLMBs) is hindered by the severe dendrite growth and side reactions due to the poor reversibility of Li plating/stripping. Herein, our study introduces an ultrathin interphase layer of covalent cage 3 (CC3) for highly reversible AFLMBs. The subnano triangular windows in CC3 serve as a Li sieve to accelerate Li desolvation and transport kinetics, inhibit electrolyte decomposition, and form LiF- and LiN-rich solid-electrolyte interphases.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan.
Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Lung cancer is the first cause of cancer death in the world, due to a delayed diagnosis and the absence of efficacy therapies. KRAS mutation occurs in 25% of all lung cancers and the concomitant mutations in LKB1 determine aggressive subtypes of these tumors. The improvement of therapeutical options for KRASG12C mutations has increased the possibility of treating these tumors, but resistance to these therapies has emerged.
View Article and Find Full Text PDFiScience
November 2024
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult brain plasticity is critical for the effective development of therapies. A brief (1-2 weeks) duration of visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!