Ca2+-activated K+ channels in gonadotropin-releasing hormone-stimulated mouse gonadotrophs.

Endocrinology

Division of Endocrinology, Department of Internal Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.

Published: May 2009

GnRH receptor activation elicits release of intracellular Ca(2+), which leads to secretion and also activates Ca(2+)-activated ion channels underlying membrane voltage changes. The predominant Ca(2+)-activated ion channels in rat and mouse gonadotrophs are Ca(2+)-activated K(+) channels. To establish the temporal relationship between GnRH-induced changes in intracellular [Ca(2+)] ([Ca(2+)](i)) and membrane current (I(m)), and to identify specific Ca(2+)-activated K(+) channels linking GnRH-induced increase in [Ca(2+)](i) to changes in plasma membrane electrical activity, we used single female mouse gonadotrophs in the perforated patch configuration of the patch-clamp technique, which preserves signaling pathways. Simultaneous measurement of [Ca(2+)](i) and I(m) in voltage-clamped gonadotrophs revealed that GnRH stimulates an increase in [Ca(2+)](i) that precedes outward I(m), and that activates two kinetically distinct currents identified, using specific toxin inhibitors, as small conductance Ca(2+)-activated K(+) (SK) current (I(SK)) and large (big) conductance voltage- and Ca(2+)-activated K(+) (BK) current (I(BK)). We show that the apamin-sensitive current has an IC(50) of 69 pM, consistent with the SK2 channel subtype and confirmed by immunocytochemistry. The magnitude of the SK current response to GnRH was attenuated by 17beta-estradiol (E(2)) pretreatment. Iberiotoxin, an inhibitor of BK channels, completely blocked the residual apamin-insensitive outward I(m), substantiating that I(BK) is a component of the GnRH-induced outward I(m). In contrast to its suppression of I(SK), E(2) pretreatment augmented peak I(BK). SK or BK channel inhibition modulated GnRH-stimulated LH secretion, implicating a role for these channels in gonadotroph function. In summary, in mouse gonadotrophs the GnRH-stimulated increase in [Ca(2+)](i) activates I(SK) and I(BK), which are differentially regulated by E(2) and which may be targets for E(2) positive feedback in LH secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671892PMC
http://dx.doi.org/10.1210/en.2008-1442DOI Listing

Publication Analysis

Top Keywords

mouse gonadotrophs
16
ca2+-activated channels
12
increase [ca2+]i
12
ca2+-activated ion
8
ion channels
8
ca2+-activated current
8
ca2+-activated
7
channels
6
gonadotrophs
5
[ca2+]i
5

Similar Publications

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

Article Synopsis
  • One in ten women of reproductive age have PCOS, characterized by subfertility, high LH levels, and potential dysfunction in the kisspeptin neurons that regulate GnRH.
  • Researchers studied the GnRH pulse generator in two mouse models of PCOS: the peripubertal androgen (PPA) model showed fewer synchronized neuron events, while the prenatal androgen (PNA) model revealed variable GnRH activity but cyclical patterns indicating complexity.
  • Findings indicate that in the PNA model, ARN neurons had increased activity during specific stages and less sensitivity to progesterone, highlighting the need to understand GnRH regulation in PCOS-related conditions.
View Article and Find Full Text PDF

Mammalian genomes contain thousands of genes for long noncoding RNA (lncRNAs), some of which have been shown to affect protein coding gene expression through diverse mechanisms. The lncRNA transcripts are longer than 200 nucleotides and are often capped, spliced, and polyadenylated, but not translated into protein. Nuclear lncRNAs can modify chromatin structure and transcription in trans or cis by interacting with the DNA, forming R-loops, and recruiting regulatory proteins.

View Article and Find Full Text PDF

Combined Pituitary Hormone Deficiency in -Knockout Zebrafish.

Int J Mol Sci

July 2024

School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.

Article Synopsis
  • *Research using a zebrafish model with LHX4 knockout shows that these fish have reduced expression of key pituitary hormones, survive to adulthood despite size reduction, and show fertility differences between males and females.
  • *This zebrafish model provides a valuable tool for studying the effects of LHX4 mutations, similar to those seen in patients with combined pituitary hormone deficiency (CPHD).*
View Article and Find Full Text PDF

Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs.

View Article and Find Full Text PDF

Role of microRNAs in pituitary gonadotrope cells.

Gen Comp Endocrinol

September 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China. Electronic address:

The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!