Follistatin is a transcriptional target and a modulator of activin action. Through an autocrine/paracrine loop, activin controls follistatin levels and thus regulates its own bioavailability. In gonadotropic alphaT3-1 cells, activin induces follistatin transcription primarily through the action of Smad3 at an intronic Smad-binding element (SBE1). Using a proteomics approach, we searched for endogenous alphaT3-1 proteins that participate in SBE1-mediated transcription. We identified FoxL2, a member of the forkhead family, as a candidate modulator of SBE1 function. Mutations of FoxL2 are associated with the blepharophimosis/ptosis/epicanthus inversus syndrome characterized with craniofacial defects and premature ovarian failure. FoxL2 localizes to alpha-glycoprotein subunit- and follicle-stimulating hormone beta-positive cells of the adult mouse pituitary and is present in alphaT3-1 and LbetaT2 cells, but its pituitary actions remain largely unknown. We have determined that FoxL2 binds to a forkhead-binding element (FKHB) located just downstream of the SBE1 site of the follistatin gene and functions as a Smad3 partner to drive SBE1-mediated transcription in alphaT3-1 cells treated with activin. Chromatin immunoprecipitation assays confirm that endogenous FoxL2 and Smad3 are recruited to the intronic enhancer of the follistatin gene where the SBE1 and FKHB sites are located. Exogenous FoxL2 enhances SBE1-mediated transcription, and short hairpin RNA-mediated knockdown of endogenous FoxL2 protein compromises this effect in alphaT3-1 cells. FoxL2 directly associates with Smad3 but not Smad2 or Smad4. This association between Smad3 and FoxL2 is mediated by the MH2 domain of Smad3 and is dependent on an intact forkhead domain in FoxL2. Altogether, these observations highlight a novel role for FoxL2 and suggest that it may function as a transcriptional regulator and a coordinator of Smad3 targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658057 | PMC |
http://dx.doi.org/10.1074/jbc.M806676200 | DOI Listing |
Comp Biochem Physiol B Biochem Mol Biol
January 2025
Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
Apostichopus japonicus is a highly significant marine aquaculture species. Research findings have indicated that male sea cucumbers demonstrate a more rapid growth rate compared to females, underscoring the potential advantages of establishing an all-male population. In this study, we identified a specific protein-coding gene (ORFan) within a 4565 bp male fragment and named it sex determination factor (sdf).
View Article and Find Full Text PDFMol Oncol
January 2025
Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
Forkhead box L2 (FOXL2) encodes a transcription factor essential for sex determination, and ovary development and maintenance. Mutations in this gene are implicated in syndromes involving premature ovarian failure and granulosa cell tumors (GCTs). This rare cancer accounts for less than 5% of diagnosed ovarian cancers and is causally associated with the FOXL2 c.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Problem: Endometriosis (EM) is known as a common estrogen-dependent chronic inflammatory disease. Elevated levels of Forkhead box L2 (FOXL2) have been observed in uterine diseases, including EM. However, the molecular mechanism of FOXL2 in EM needs to be further illustrated.
View Article and Find Full Text PDFBiol Res
January 2025
Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
Background: Karyotype 46, XY female disorders of sex development (46, XY female DSD) are congenital conditions due to irregular gonadal development or androgen synthesis or function issues. Genes significantly influence DSD; however, the underlying mechanisms remain unclear. This study identified a Chinese family with 46, XY female DSD due to the CUL4B gene.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic.
Background: Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT.
Methods: The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!