The methanolysis of a series of P=S phosphorothionate pesticides (fenitrothion, coumaphos, diazinon, and dichlofenthion) catalyzed by an ortho-palladated complex covalently attached to two different solid supports, macroporous polystyrene and amorphous silica gel, was studied. Both the polystyrene and the silica-based catalysts showed excellent activity in methanol near neutral pH (neutral s(s)pH = 8.38) at ambient temperature. These heterogeneous catalysts can be readily recovered and reused without significant loss of activity. Fifty milligrams of the silica-supported catalyst SiPd1 offered an acceleration of up to 8.6 x 10(9)-fold for the methanolysis of fenitrothion (2) over the methoxide-promoted background reaction at s(s)pH = 8.8. For the same reaction, 50 mg of polystyrene-supported complex PSPd2 provided a 3.7 x 10(9)-fold acceleration at s(s)pH = 8.8. When accounting for the amount of palladium in the solid, the slight superiority of silica over polystyrene as a solid support is believed to be a result of several possible factors including a higher concentration of active sites accessible to the reaction solvent and a more hydrophilic surface environment that allows better interaction of the methanol solvent with the attached palladacycle. Unlike the behavior in homogeneous solution, the rate of methanolysis of the substrates catalyzed by the solid catalysts was relatively insensitive to the nature of the substrate, probably indicating that a mass transport process is rate limiting. The solid-supported materials effectively decompose malathion at roughly stoichiometric ratios, but they are strongly inhibited by the thiol product resulting from the cleavage of the P=S(SR) linkage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic801382e | DOI Listing |
Mutat Res Genet Toxicol Environ Mutagen
July 2023
Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico. Electronic address:
Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice.
View Article and Find Full Text PDFJ Vet Pharmacol Ther
November 2023
Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina.
Organophosphates (OPs), pyrethrins and fipronil, are acaricides commonly used in cattle, mainly as pour on formulations. Scant information is available on their potential interactions with hepatic xenobiotic metabolizing enzymes. This work aimed to evaluate in vitro the potential inhibitory effects of widely employed acaricides on catalytic activities mediated by hepatic cytochrome P450 (CYP) and flavin-monooxygenase (FMO) enzymes in cattle.
View Article and Find Full Text PDFEcotoxicol Environ Saf
April 2023
Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Objective: The aim of this study was to evaluate the association between organophosphorus pesticides (OPPs) exposure and sleep problems.
Methods: In this study, data from 6295 participants aged 18 years or older were collected from the National Health and Nutrition Examination Survey (NHANES). The dialkyl phosphate compounds (DAPs) metabolites, OPPs exposure biomarker, were examined using solid phase extraction-high coupled with isotope dilution-ultrahigh performance liquid chromatography-tandem mass spectrometry.
Chemosphere
May 2023
Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain. Electronic address:
Background: Several non-persistent pesticides are endocrine disrupting chemicals and may impact on sexual maturation.
Objective: To examine the association between urinary biomarkers of non-persistent pesticides and sexual maturation in adolescent males in the Environment and Childhood (INMA) Project.
Methods: The metabolites of several pesticides were measured in spot urine samples collected from 201 boys aged 14-17 years, including: 3,5,6-trichloro-2-pyridinol (TCPy), metabolite of chlorpyrifos; 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), metabolite of diazinon; malathion diacid (MDA), metabolite of malathion; diethyl thiophosphate (DETP) and diethyl dithiophosphate, non-specific metabolites of organophosphates; 3-phenoxybenzoic acid (3-PBA) and dimethyl cyclopropane carboxylic acid, metabolites of pyrethroids; 1-naphthol (1-NPL), metabolite of carbaryl; and ethylene thiourea (ETU), metabolite of dithiocarbamate fungicides.
Environ Pollut
January 2023
Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!