Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/17460751.4.1.99 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!