An instability in the growth of nonperiodic InGaAs/GaAs multiple quantum well samples, ordinarily of high-quality when grown with equal periods of order of half the wavelength of light in the material, leads to a dramatic microscopic, self-organized surface grating. This effect was discovered while growing quantum wells with two unequal barrier lengths arranged in a Fibonacci sequence to form an optical quasicrystal. A laser beam incident normal to the surface of the sample is diffracted into a propeller-shaped pattern. The sample surface has a distinctly cloudy appearance when viewed along one crystal axis but is mirror-like when the sample is rotated 90 degrees. The instability results in a five-fold increase in the absorption linewidth of the heavy-hole exciton transition. Atomic force microscopy, transmission electron microscopy, and scanning electron microscopy were used to study the samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.021512DOI Listing

Publication Analysis

Top Keywords

quantum wells
8
electron microscopy
8
attempts grow
4
grow optically
4
optically coupled
4
coupled fibonacci-spaced
4
fibonacci-spaced ingaas/gaas
4
ingaas/gaas quantum
4
wells result
4
surface
4

Similar Publications

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

Tunable Characteristics of Optical Frequency Combs from InGaAs/GaAs Two-Section Mode-Locked Lasers.

Sensors (Basel)

December 2024

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 µm, which indicates a stable pulse shape, with the power-current(P-I) characteristic curve revealing a small difference between forward and reverse drive currents in the gain region.

View Article and Find Full Text PDF

Serious electron leakage and poor hole injection efficiency are still challenges for deep ultraviolet AlGaN-based light-emitting diodes with a traditional structure in achieving high performance. Currently, the majority of research works concentrate on optimizing the structures of the electron blocking layer (EBL) and last quantum barrier (LQB) separately, rather than considering them as an integrated structure. Therefore, in this study, an Al-content-varied AlGaN composite last quantum barrier (CLQB) layer is proposed to replace the traditional EBL and LQB layers.

View Article and Find Full Text PDF

Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.

View Article and Find Full Text PDF

Free Carrier Auger-Meitner Recombination in Monolayer Transition Metal Dichalcogenides.

Nano Lett

January 2025

Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, United States.

Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!