Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To elucidate the role of the prostaglandin synthase cyclooxygenase-2 (Cox-2) and the mechanisms of dopaminergic (DA) neurodegeneration, monkeys were injected subacutely or chronically (n = 5/group) with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Chronically treated animals developed parkinsonian signs and were killed 6 months after the last treatment; tyrosine hydroxylase-expressing neurons decreased in all substantia nigra (SN) cell groups in both treatment groups. In untreated controls (n = 3), there was low Cox-2 expression in ventral SN DA neurons and high expression in ventral tegmental area neurons. In subacutely treated monkeys, Cox-2 expression increased in surviving DA cells, particularly in the ventrolateral SN. In chronically treated monkeys, enhanced Cox-2 expression appeared only in surviving ventral tegmental area and ventral SN neurons. Thus increased Cox-2 did not persist in other SN neurons after discontinuing 1-methyl-4-phenyl-1,2,36-tetrahydropyridine. Some DA neurons in treated but not control monkeys expressed the active nuclear form of phospho-c-Jun, but not the active form of nuclear factor-kappaB. We conclude that Cox-2 expression does not confer vulnerability to neurodegeneration in DA neurons and that it is unlikely that a subacute insult to DA neurons can perpetuate degeneration through Cox-2 activation. Other mechanisms, probably through the Jun N-terminal kinase cascade, lead to DA cell death in this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NEN.0b013e3181919275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!