Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated with IFN-alpha and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the networks, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks are attractive antiviral targets because of their genetic linkage with many other positions that we predict would suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus with sufficient genetic variation, including most human RNA viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613460 | PMC |
http://dx.doi.org/10.1172/JCI37085 | DOI Listing |
NPJ Antimicrob Resist
August 2024
Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland.
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Thoracic and abdominal aortic aneurysm poses a substantial mortality risk in adults, yet many of its underlying factors remain unidentified. Here, we identify mitochondrial nicotinamide adenine dinucleotide (NAD)⁺ deficiency as a causal factor for the development of aortic aneurysm. Multiomics analysis of 150 surgical aortic specimens indicated impaired NAD salvage and mitochondrial transport in human thoracic aortic aneurysm, with expression of the NAD transporter SLC25A51 inversely correlating with disease severity and postoperative progression.
View Article and Find Full Text PDFNature
January 2025
Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
Rubisco is the primary CO-fixing enzyme of the biosphere, yet it has slow kinetics. The roles of evolution and chemical mechanism in constraining its biochemical function remain debated. Engineering efforts aimed at adjusting the biochemical parameters of rubisco have largely failed, although recent results indicate that the functional potential of rubisco has a wider scope than previously known.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
The potential role of hydrogen sulfide (HS) in the modulation of neuropathic pain is increasingly recognized. This study investigated the therapeutic effect of intraperitoneal injection of the HS donor sodium hydrosulfide (NaHS) on neuropathic pain. Utilizing the spared nerve injury (SNI) model in mice, the research investigates the role of astrocytes and the excitatory neurotransmitter glutamate in chronic pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!