The double-histone-acetyltransferase complex ATAC is essential for mammalian development.

Mol Cell Biol

Department of Pathology, Genentech Inc., 1 DNA Way MS 72B, South San Francisco, CA 94080, USA.

Published: March 2009

AI Article Synopsis

Article Abstract

Acetylation of the histone tails, catalyzed by histone acetyltransferases (HATs), is a well-studied process that contributes to transcriptionally active chromatin states. Here we report the characterization of a novel mammalian HAT complex, which contains the two acetyltransferases GCN5 and ATAC2 as well as other proteins linked to chromatin metabolism. This multisubunit complex has a similar but distinct subunit composition to that of the Drosophila ADA2A-containing complex (ATAC). Recombinant ATAC2 has a weak HAT activity directed to histone H4. Moreover, depletion of ATAC2 results in the disassembly of the complex, indicating that ATAC2 not only carries out an enzymatic function but also plays an architectural role in the stability of mammalian ATAC. By targeted disruption of the Atac2 locus in mice, we demonstrate for the first time the essential role of the ATAC complex in mammalian development, histone acetylation, cell cycle progression, and prevention of apoptosis during embryogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643826PMC
http://dx.doi.org/10.1128/MCB.01599-08DOI Listing

Publication Analysis

Top Keywords

complex atac
8
mammalian development
8
complex
5
atac2
5
double-histone-acetyltransferase complex
4
atac
4
atac essential
4
mammalian
4
essential mammalian
4
development acetylation
4

Similar Publications

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Impact of Fli1 deletion on B cell populations: A focus on age-associated B cells and transcriptional dynamics.

J Dermatol Sci

December 2024

Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan. Electronic address:

Background: Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored.

Objective: This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs).

Methods: Splenocytes of Fli1 BcKO (Cd19-Cre; Fli1) and Cd19-Cre mice were analyzed flow cytometrically.

View Article and Find Full Text PDF

Genome-wide association studies are enriched for interacting genes.

BioData Min

January 2025

The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.

Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.

View Article and Find Full Text PDF

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.

View Article and Find Full Text PDF

Gene transcription is governed by a complex regulatory system involving changes in chromatin structure, the action of transcription factors, and the activation of -regulatory elements. Postharvest fruits are threatened by , a leading causal agent of blue mold disease and one of the most economically significant postharvest pathogens worldwide. However, information on its transcription regulatory mechanism is lagging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!