Differential regulation of proteins and phosphoproteins in rice under drought stress.

Biochem Biophys Res Commun

Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou, China.

Published: January 2009

Drought is the largest constraint on rice production in Asia. Protein phosphorylation has been recognized as an important mechanism for environmental stress signaling. However, the differential expression of proteins and phosphoproteins induced by drought in rice is still largely unknown. In this paper, we report the identification of differentially expressed proteins and phosphoproteins induced by drought in rice using proteomic approaches. Three drought-responsive proteins were identified. Late embryogenesis abundant (LEA)-like protein and chloroplast Cu-Zn superoxide dismutase (SOD) were up-regulated by drought whereas Rieske Fe-S precursor protein was down-regulated. Ten drought-responsive phosphoproteins were identified: NAD-malate dehydrogenase, OSJNBa0084K20.14 protein, abscisic acid- and stress-inducible protein, ribosomal protein, drought-induced S-like ribonuclease, ethylene-inducible protein, guanine nucleotide-binding protein beta subunit-like protein, r40c1 protein, OSJNBb0039L24.13 protein and germin-like protein 1. Seven of these phosphoproteins have not previously been reported to be involved in rice drought stress. These results provide new insight into the regulatory mechanism of drought-induced proteins and implicate several previously unrecognized proteins in response to drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.12.067DOI Listing

Publication Analysis

Top Keywords

proteins phosphoproteins
12
drought stress
12
protein
12
rice drought
8
phosphoproteins induced
8
induced drought
8
drought rice
8
drought
7
proteins
6
phosphoproteins
5

Similar Publications

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Background: Lung cancer is one of the malignant tumors with the highest morbidity and mortality rates worldwide, seriously threatening human health. Non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung cancer cases. STMN1 is a microtubule depolymerizing protein widely present in the cytoplasm and its expression level is associated with the prognosis of NSCLC patients.

View Article and Find Full Text PDF

Cardiac dysfunction and adverse consequences induced by cardiac fibrosis have been well documented. However, the cardiac fibrosis pathway in chronic heart failure (CHF) remains unclear, and it is therefore necessary to conduct further research for the sake of developing more effective therapeutic strategies for CHF. Some recent studies suggest that Pericarpium Trichosanthis (PT) may help improve the progression of fibrotic diseases.

View Article and Find Full Text PDF

Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in , , and/or (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising.

View Article and Find Full Text PDF

JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis.

Int J Mol Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!