Background: Little is known about neuronal death mechanisms following spinal cord ischemia. The present study aimed to investigate the protective effect of pentoxifylline (PTX) against spinal cord ischemia/reperfusion (I/R) injury.

Methods: Rabbits sustained spinal cord ischemia following 45 minutes cross-clamping of the infrarenal aorta. Experimental groups were as follows: the first group of animals (sham, n = 8) underwent laparotomy alone and served as the sham group; the second group (I/R, n = 20) received carrier (3 ml saline solution) and served as the control group; the third group (PTX-A, n = 20) received PTX intravenously 10 minutes prior to ischemia; and the fourth group (PTX-B, n = 20) received PTX intravenously at the onset of reperfusion. Rabbits were evaluated for hind-limb motor function with the Tarlov scoring system at 48 hours. Serum was assayed with enzyme-linked immunosorbent assay for tumor necrosis factor alpha (TNF-alpha) and spinal cords were harvested for myeloperoxidase (MPO) activity, histopathological analysis, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining, platelet/endothelial cell adhesion molecule-1 (PECAM-1) and caspase-3 immunohistochemistry, and the number of necrotic and apoptotic neuron were counted and data analyzed at 12, 24, 48 and 72 hours of reperfusion. Spinal cords were studied by electron microscopy.

Results: Improved Tarlov scores were seen in PTX-treated rabbits as compared with ischemic control rabbits at 48 hours. A significant reduction was found in TNF-alpha in serum, activity of MPO and immunoreactivity of the PECAM-1 and caspase-3 in PTX-treated rabbits. There were fewer apoptotic neurons than necrotic neurons (P < 0.05). A significant decrease in both necrotic and apoptotic neurons was observed in the PTX-treated groups (PTX-A and PTX-B) compared with the I/R group (P < 0.05). Both necrotic and apoptotic neurons were found with the electron microscope.

Conclusions: PTX may induce protection against ischemia injury in the spinal cord, thereby preventing both necrosis and apoptosis. A major mode of cell death in spinal cord ischemia/reperfusion injury is necrosis while apoptosis is not dominant.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spinal cord
24
cord ischemia/reperfusion
12
necrosis apoptosis
12
necrotic apoptotic
12
apoptotic neurons
12
spinal
8
ischemia/reperfusion injury
8
cord ischemia
8
received ptx
8
ptx intravenously
8

Similar Publications

Clinical characteristics associated with cervical hydrated nucleus pulposus extrusion in dogs.

J Vet Intern Med

January 2025

Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.

Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.

Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

The journal retracts the article titled "Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury" [...

View Article and Find Full Text PDF

Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!