Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In cementless total hip arthroplasty, a fair amount of interfacial gap exists between the femoral stem and the bone. However, the effect of these gaps on the mechanical stability of the stem is poorly understood. In this paper, a finite element model with various interfacial gap definitions is used to quantify the effect of interfacial gaps on the primary stability of a Versys Fiber Metal Taper stem under stair climbing loads. In the first part, 500 random interfacial gap definitions were simulated. The resulting micromotion was approximately inversely proportional to the contact ratio, and the variance of the micromotion was greater with a lower contact ratio. Moreover, when the magnitude of the micromotion was compared between the gap definitions that had contact at a specific site and those that had no contact at that site, it was found that gaps located in the proximal-medial region of the stem surface had the most important effect on the micromotion. In a second trial, 17 gap definitions mimicking a gap pattern that has been observed experimentally were simulated. For a given contact ratio, the micromotion observed in the second trial was lower than the average result of those in the first, where the gaps were placed randomly. In either trial, when the contact ratio was higher than 40%, the micromotion showed no significant difference (first trial) or a gentle slope (-0.24 mum% in the second trial) in relation to the contact ratio. Considering the reported contact ratios for properly implanted stems, variations in the amount of interfacial gap would not likely cause a drastic difference in micromotion, and this effect could be easily overshadowed by other clinical factors. In conclusion, differences in interfacial gaps are not expected to have a noticeable effect on the clinical micromotion of this cementless stem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.3005176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!