We present the experimental and simulation results of two-dimensional optical coherent correlation spectroscopy signals along the phase-matching direction k(I) = -k(1) + k(2) + k(3) projected on the two-dimensional (2D) (Omega(3),Omega(2)) plane corresponding to the second and third delay periods. Overlapping Raman coherences in the conventional (Omega(3),Omega(1)) 2D projection may now be clearly resolved. The linewidths of the heavy-hole (HH) and light-hole (LH) excitonic Raman coherence peaks are obtained. Further insights on the higher-order (beyond time-dependent Hartree-Fock) correlation effects among mixed (HH and LH) two excitons can be gained by using a cocircular pulse polarization configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3037217 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States.
The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.
The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, Delhi, 110016, INDIA.
We have grown (111)- and (001)-oriented NiO thin films on (0001)-Sapphire and (001)-MgO substrates using pulsed laser deposition (PLD), respectively. DC magnetic susceptibility measurements underline that the Néel temperatures of the samples are beyond room-temperature. This is further confirmed by the presence of two-magnon Raman scattering modes in these films in ambient conditions.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India.
Lower-dimensional organic-inorganic hybrid perovskite materials promise to revolutionize the optoelectronics industry due to the tremendous possibilities of exotic control on excitonic properties driven via quantum confinement. Flexible organic cations acting as spacers and stabilizers enhance electron-phonon couplings, further amplifying the potential for modular light-matter interactions in these materials. Herein we unravel the nature of excitons in a quasi-1D chain of corner-sharing bismuth iodide octahedra with an intrinsic quantum well structure stabilized by a hexyl-diammonium cation.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
Silicon carbide is a wide-bandgap semiconductor useful in a new class of power devices in the emerging area of high-temperature and high-voltage electronics. The diffusion of SiC devices is strictly related to the growth of high-quality substrates and epitaxial layers involving high-temperature treatment processing. In this work, we studied the thermal stability of substrates of 4H-SiC in an inert atmosphere in the range 1600-2000 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!