A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Responses of subtropical conifer plantation to future climate change: a simulation study]. | LitMetric

[Responses of subtropical conifer plantation to future climate change: a simulation study].

Ying Yong Sheng Tai Xue Bao

Shenyang Institute of Atmospheric Environment, China Meteorological Administration, Shengyang 110016, China.

Published: September 2008

The responses of subtropical conifer plantation to climate change scenarios were investigated in Qianyanzhou by the process-based physiological-ecological model EALCO (ecological assimilation of land and climate observation). The results showed that CO2 concentration had the greatest effects on the carbon and water fluxes of the plantation, followed by temperature, and precipitation. CO2 concentration was the main driving factor for the gross photosynthesis productivity of this plantation ecosystem, and temperature and CO2 concentration were the key environmental factors controlling the ecosystem respiration. Increasing temperature accelerated the respiration of aboveground part dramatically, while increasing CO2 concentration had greater effects on soil respiration. The evapotranspiration was enhanced by increasing temperature, but reduced by increasing CO2 concentration. Under the future climate changing scenario (the year 2100), the net primary productivity of this plantation ecosystem would be increased by 22%, suggesting that this ecosystem is still capable of sequestrating carbon.

Download full-text PDF

Source

Publication Analysis

Top Keywords

co2 concentration
20
subtropical conifer
8
conifer plantation
8
future climate
8
climate change
8
productivity plantation
8
plantation ecosystem
8
increasing temperature
8
increasing co2
8
plantation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!