Depletion of SK1 channel subunits leads to constitutive insulin secretion.

FEBS Lett

Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, United States.

Published: January 2009

In the pancreas, the role of the small-conductance, calcium-activated SK channels remains controversial. Here, we show that three SK subtypes are expressed in the rat insulinoma cells. Our findings demonstrate that rat SK1 (rSK1) channels ensure appropriate insulin secretion by establishing the cell's negative resting membrane potential and shortening the duration of the action potential. We also found that the depletion of rSK1 transcripts generated a condition in which beta cells constitutively secrete insulin, even in the absence of a stimulating molecule (such as glucose). Together, these results implicate SK1 subunits as key regulators of excitability and endocrine function in beta cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2008.12.024DOI Listing

Publication Analysis

Top Keywords

insulin secretion
8
beta cells
8
depletion sk1
4
sk1 channel
4
channel subunits
4
subunits leads
4
leads constitutive
4
constitutive insulin
4
secretion pancreas
4
pancreas role
4

Similar Publications

(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential.

Pharmaceuticals (Basel)

January 2025

Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico.

Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications.

View Article and Find Full Text PDF

Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!