A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H(2)SO(4) and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N=10) was found 0.7 microg L(-1). The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2008.10.073 | DOI Listing |
Adv Sci (Weinh)
November 2024
Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
Extended shortwave infrared (eSWIR) photodetectors that employ solution-processable semiconductors have attracted attention for use in applications such as ranging, night vision, and gas detection. Colloidal quantum dots (CQDs) are promising materials with facile bandgap tunability across the visible-to-mid-infrared wavelengths. However, toxic elements, such as Hg and Pb, and the slow response time of CQD-based IR photodetectors, limit their commercial viability.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2024
MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8501, Japan.
High energy-conversion efficiency (ZT) of thermoelectric materials has been achieved in heavy metal chalcogenides, but the use of toxic Pb or Te is an obstacle for wide applications of thermoelectricity. Here, high ZT is demonstrated in toxic-element free Ba BO (B = Si and Ge) with inverse-perovskite structure. The negatively charged B ion contributes to hole transport with long carrier life time, and their highly dispersive bands with multiple valley degeneracy realize both high p-type electronic conductivity and high Seebeck coefficient, resulting in high power factor (PF).
View Article and Find Full Text PDFWater Sci Technol
December 2023
Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey.
Elimination of the matrix effect is a major challenge in developing a method for the quantification of heavy metals (HMs) in water samples. In this regard, the current research describes the simultaneous analyses of Cu(II), Cd(II), and Ni(II) ions in water matrices through flame atomic absorption spectrophotometry (FAAS) after preconcentration with carrier element-free co-precipitation (CEFC) technique by the help of an organic co-precipitant, 3-{[5-(4-Chlorobenzyl)-3-(4-chlorophenyl)-1H-1,2,4-triazol-1-yl]-methyl}-4-[2,4-(dichlorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (CCMBATT). Based on our literature research, CCMBATT was employed for the first time in this study as an organic co-precipitant for the preconcentration of HMs.
View Article and Find Full Text PDFResearch (Wash D C)
July 2020
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China.
CaMgBi-based compounds, a kind of the representative compounds of Zintl phases, have uniquely inherent layered structure and hence are considered to be potential thermoelectric materials. Generally, alloying is a traditional and effective way to reduce the lattice thermal conductivity through the mass and strain field fluctuation between host and guest atoms. The cation sites have very few contributions to the band structure around the fermi level; thus, cation substitution may have negligible influence on the electric transport properties.
View Article and Find Full Text PDFTalanta
September 2016
Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; Faculty of Public Health and Health Informatics, Umm AL-Qura University, Makkah, Saudi Arabia. Electronic address:
A new simple and sensitive preconcentration, separation and environmentally friendly method based on carrier element free coprecipitation (CEFC) was developed using 4-(2-hydroxybenzylideneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (APSAL) as a new organic co-precipitant to precipitate Cr(3+), Cu(2+), Fe(3+), Pb(2+) and Zn(2+) ions from water and food samples. The levels of the studied elements were detected by flame atomic absorption spectrometry (FAAS). The impact of several analytical parameters, such as pH, sample volume and coprecipitant amount as well as centrifugation rate and time was investigated to recover the examined metal ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!