The central role of mitochondria in basic physiological processes has rendered this organelle a receiver and integrator of multiple regulatory signals. Steroid and thyroid hormones are major modulators of mitochondrial functions and the question arises as to how these molecules act at the molecular level. The detection in mitochondria of steroid and thyroid hormone receptors suggested their direct action on mitochondrial functions within the context of the organelle. The interaction of the receptors with regulatory elements of the mitochondrial genome and the activation of gene transcription underlies the hormonal stimulation of energy yield. Glucocorticoid activation of hepatocyte RNA synthesis is one of the experimental models exploited in this respect. Furthermore, the interaction of the receptors with apoptotic/antiapoptotic factors is possibly associated with the survival-death effects of the hormones. In addition to the steroid/thyroid hormone receptors, several other receptors belonging to the superfamily of nuclear receptors, as well as transcription factors with well defined nuclear actions, have been found in mitochondria. How these molecules act and interact and how they can affect the broad spectrum of mitochondrial functions is an emerging exciting field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2008.11.011 | DOI Listing |
Cell Commun Signal
January 2025
Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.
View Article and Find Full Text PDFAmino Acids
January 2025
Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
Uterine Corpus Endometrial Carcinoma (UCEC) represents a common malignant neoplasm in women, with its prognosis being intricately associated with available therapeutic interventions. In the past few decades, there has been a burgeoning interest in the role of mitochondria within the context of UCEC. Nevertheless, the development and application of prognostic models predicated on mitochondrial-related genes (MRGs) in UCEC remains in the exploratory stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!